000904160 001__ 904160
000904160 005__ 20240712112826.0
000904160 0247_ $$2doi$$a10.1088/1361-6528/abcef1
000904160 0247_ $$2ISSN$$a0957-4484
000904160 0247_ $$2ISSN$$a1361-6528
000904160 0247_ $$2Handle$$a2128/30529
000904160 0247_ $$2pmid$$a33254162
000904160 0247_ $$2WOS$$aWOS:000644152700001
000904160 037__ $$aFZJ-2021-05730
000904160 082__ $$a530
000904160 1001_ $$0P:(DE-Juel1)180631$$aCamara, Osmane$$b0$$eCorresponding author$$ufzj
000904160 245__ $$aAnomalous nucleation of crystals within amorphous germanium nanowires during thermal annealing
000904160 260__ $$aBristol$$bIOP Publ.$$c2021
000904160 3367_ $$2DRIVER$$aarticle
000904160 3367_ $$2DataCite$$aOutput Types/Journal article
000904160 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643099205_11645
000904160 3367_ $$2BibTeX$$aARTICLE
000904160 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904160 3367_ $$00$$2EndNote$$aJournal Article
000904160 520__ $$aIn this work, germanium nanowires rendered fully amorphous via xenon ion irradiation have been annealed within a transmission electron microscope to induce crystallization. During annealing crystallites appeared in some nanowires whilst others remained fully amorphous. Remarkably, even when nucleation occurred, large sections of the nanowires remained amorphous even though the few crystallites embedded in the amorphous phase were formed at a minimum of 200 °C above the temperature for epitaxial growth and 100 °C above the temperature for random nucleation and growth in bulk germanium. Furthermore, the presence of crystallites was observed to depend on the diameter of the nanowire. Indeed, the formation of crystallites occurred at a higher annealing temperature in thin nanowires compared with thicker ones. Additionally, nanowires with a diameter above 55 nm were made entirely crystalline when the annealing was performed at the temperature normally required for crystallization in germanium (i.e. 500 °C). It is proposed that oxygen atoms hinder both the formation and the growth of crystallites. Furthermore, as crystallites must reach a minimum size to survive and grow within the amorphous nanowires, the instability of crystallites may also play a limited role for the thinnest nanowires.
000904160 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000904160 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904160 7001_ $$0P:(DE-HGF)0$$aMir, A. H.$$b1
000904160 7001_ $$0P:(DE-HGF)0$$aGreaves, G.$$b2
000904160 7001_ $$0P:(DE-HGF)0$$aDonnelly, S. E.$$b3
000904160 7001_ $$0P:(DE-HGF)0$$aHinks, J. A.$$b4
000904160 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/1361-6528/abcef1$$gVol. 32, no. 28, p. 285707 -$$n28$$p285707 -$$tNanotechnology$$v32$$x0957-4484$$y2021
000904160 8564_ $$uhttps://juser.fz-juelich.de/record/904160/files/Anomalous%20nucleation%20of%20crystals%20within%20amorphous...pdf$$yPublished on 2021-04-26. Available in OpenAccess from 2022-04-26.
000904160 8564_ $$uhttps://juser.fz-juelich.de/record/904160/files/Camara_2021_Nanotechnology_32_285707.pdf$$yRestricted
000904160 909CO $$ooai:juser.fz-juelich.de:904160$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180631$$aForschungszentrum Jülich$$b0$$kFZJ
000904160 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)180631$$a University of Huddersfield$$b0
000904160 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000904160 9141_ $$y2021
000904160 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000904160 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000904160 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000904160 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000904160 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904160 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000904160 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000904160 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000904160 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000904160 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000904160 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2019$$d2021-01-30
000904160 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-30$$wger
000904160 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000904160 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000904160 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000904160 920__ $$lyes
000904160 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000904160 9801_ $$aFullTexts
000904160 980__ $$ajournal
000904160 980__ $$aVDB
000904160 980__ $$aUNRESTRICTED
000904160 980__ $$aI:(DE-Juel1)IEK-9-20110218
000904160 981__ $$aI:(DE-Juel1)IET-1-20110218