000904166 001__ 904166
000904166 005__ 20240712112826.0
000904166 0247_ $$2doi$$a10.1021/acscatal.1c01395
000904166 0247_ $$2Handle$$a2128/30160
000904166 0247_ $$2altmetric$$aaltmetric:107103961
000904166 0247_ $$2WOS$$aWOS:000664333800044
000904166 037__ $$aFZJ-2021-05736
000904166 082__ $$a540
000904166 1001_ $$00000-0003-1115-6759$$aGeer, Ana M.$$b0
000904166 245__ $$aElectrocatalytic Water Oxidation by a Trinuclear Copper(II) Complex
000904166 260__ $$aWashington, DC$$bACS$$c2021
000904166 3367_ $$2DRIVER$$aarticle
000904166 3367_ $$2DataCite$$aOutput Types/Journal article
000904166 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642000687_18629
000904166 3367_ $$2BibTeX$$aARTICLE
000904166 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904166 3367_ $$00$$2EndNote$$aJournal Article
000904166 520__ $$aWe report a trinuclear copper(II) complex, [(DAM)Cu3(μ3-O)][Cl]4 (1, DAM = dodecaaza macrotetracycle), as a homogeneous electrocatalyst for water oxidation to dioxygen in phosphate-buffered solutions at pH 7.0, 8.1, and 11.5. Electrocatalytic water oxidation at pH 7 occurs at an overpotential of 550 mV with a turnover frequency of ∼19 s–1 at 1.5 V vs NHE. Controlled potential electrolysis (CPE) experiments at pH 11.5 over 3 h at 1.2 V and at pH 8.1 for 40 min at 1.37 V vs NHE confirm the evolution of dioxygen with Faradaic efficiencies of 81% and 45%, respectively. Rinse tests conducted after CPE studies provide evidence for the homogeneous nature of the catalysis. The linear dependence of the current density on the catalyst concentration indicates a likely first-order dependence on the Cu precatalyst 1, while kinetic isotope studies (H2O versus D2O) point to involvement of a proton in or preceding the rate-determining step. Rotating ring-disk electrode measurements at pH 8.1 and 11.2 show no evidence of H2O2 formation and support selectivity to form dioxygen. Freeze-quench electron paramagnetic resonance studies during electrolysis provide evidence for the formation of a molecular copper intermediate. Experimental and computational studies support a key role of the phosphate as an acceptor base. Moreover, density functional theory calculations highlight the importance of second-sphere interactions and the role of the nitrogen-based ligands to facilitate proton transfer processes.
000904166 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000904166 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904166 7001_ $$00000-0002-3432-0817$$aMusgrave III, Charles$$b1
000904166 7001_ $$0P:(DE-HGF)0$$aWebber, Christopher$$b2
000904166 7001_ $$00000-0002-7962-0186$$aNielsen, Robert J.$$b3
000904166 7001_ $$0P:(DE-HGF)0$$aMcKeown, Bradley A.$$b4
000904166 7001_ $$0P:(DE-HGF)0$$aLiu, Chang$$b5
000904166 7001_ $$0P:(DE-Juel1)168465$$aSchleker, P. Philipp M.$$b6
000904166 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b7$$ufzj
000904166 7001_ $$00000-0003-0425-5089$$aJia, Xiaofan$$b8
000904166 7001_ $$00000-0003-0939-3309$$aDickie, Diane A.$$b9
000904166 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b10$$ufzj
000904166 7001_ $$0P:(DE-HGF)0$$aZhang, Sen$$b11
000904166 7001_ $$0P:(DE-HGF)0$$aMachan, Charles W.$$b12$$eCorresponding author
000904166 7001_ $$00000-0003-0097-5716$$aGoddard, William A.$$b13$$eCorresponding author
000904166 7001_ $$00000-0001-5714-3887$$aGunnoe, T. Brent$$b14$$eCorresponding author
000904166 773__ $$0PERI:(DE-600)2584887-2$$a10.1021/acscatal.1c01395$$gVol. 11, no. 12, p. 7223 - 7240$$n12$$p7223 - 7240$$tACS catalysis$$v11$$x2155-5435$$y2021
000904166 8564_ $$uhttps://juser.fz-juelich.de/record/904166/files/acscatal.1c01395.pdf$$yRestricted
000904166 8564_ $$uhttps://juser.fz-juelich.de/record/904166/files/final%20manuscript.pdf$$yPublished on 2021-06-04. Available in OpenAccess from 2022-06-04.
000904166 909CO $$ooai:juser.fz-juelich.de:904166$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904166 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168465$$aForschungszentrum Jülich$$b6$$kFZJ
000904166 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)168465$$a Max-Planck-Institut Mülheim$$b6
000904166 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich$$b7$$kFZJ
000904166 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b10$$kFZJ
000904166 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b10$$kRWTH
000904166 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000904166 9141_ $$y2021
000904166 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000904166 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000904166 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904166 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CATAL : 2019$$d2021-01-30
000904166 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000904166 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS CATAL : 2019$$d2021-01-30
000904166 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000904166 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000904166 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000904166 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000904166 920__ $$lyes
000904166 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000904166 9801_ $$aFullTexts
000904166 980__ $$ajournal
000904166 980__ $$aVDB
000904166 980__ $$aUNRESTRICTED
000904166 980__ $$aI:(DE-Juel1)IEK-9-20110218
000904166 981__ $$aI:(DE-Juel1)IET-1-20110218