001     904166
005     20240712112826.0
024 7 _ |a 10.1021/acscatal.1c01395
|2 doi
024 7 _ |a 2128/30160
|2 Handle
024 7 _ |a altmetric:107103961
|2 altmetric
024 7 _ |a WOS:000664333800044
|2 WOS
037 _ _ |a FZJ-2021-05736
082 _ _ |a 540
100 1 _ |a Geer, Ana M.
|0 0000-0003-1115-6759
|b 0
245 _ _ |a Electrocatalytic Water Oxidation by a Trinuclear Copper(II) Complex
260 _ _ |a Washington, DC
|c 2021
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642000687_18629
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report a trinuclear copper(II) complex, [(DAM)Cu3(μ3-O)][Cl]4 (1, DAM = dodecaaza macrotetracycle), as a homogeneous electrocatalyst for water oxidation to dioxygen in phosphate-buffered solutions at pH 7.0, 8.1, and 11.5. Electrocatalytic water oxidation at pH 7 occurs at an overpotential of 550 mV with a turnover frequency of ∼19 s–1 at 1.5 V vs NHE. Controlled potential electrolysis (CPE) experiments at pH 11.5 over 3 h at 1.2 V and at pH 8.1 for 40 min at 1.37 V vs NHE confirm the evolution of dioxygen with Faradaic efficiencies of 81% and 45%, respectively. Rinse tests conducted after CPE studies provide evidence for the homogeneous nature of the catalysis. The linear dependence of the current density on the catalyst concentration indicates a likely first-order dependence on the Cu precatalyst 1, while kinetic isotope studies (H2O versus D2O) point to involvement of a proton in or preceding the rate-determining step. Rotating ring-disk electrode measurements at pH 8.1 and 11.2 show no evidence of H2O2 formation and support selectivity to form dioxygen. Freeze-quench electron paramagnetic resonance studies during electrolysis provide evidence for the formation of a molecular copper intermediate. Experimental and computational studies support a key role of the phosphate as an acceptor base. Moreover, density functional theory calculations highlight the importance of second-sphere interactions and the role of the nitrogen-based ligands to facilitate proton transfer processes.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Musgrave III, Charles
|0 0000-0002-3432-0817
|b 1
700 1 _ |a Webber, Christopher
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Nielsen, Robert J.
|0 0000-0002-7962-0186
|b 3
700 1 _ |a McKeown, Bradley A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Liu, Chang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schleker, P. Philipp M.
|0 P:(DE-Juel1)168465
|b 6
700 1 _ |a Jakes, Peter
|0 P:(DE-Juel1)156296
|b 7
|u fzj
700 1 _ |a Jia, Xiaofan
|0 0000-0003-0425-5089
|b 8
700 1 _ |a Dickie, Diane A.
|0 0000-0003-0939-3309
|b 9
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 10
|u fzj
700 1 _ |a Zhang, Sen
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Machan, Charles W.
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
700 1 _ |a Goddard, William A.
|0 0000-0003-0097-5716
|b 13
|e Corresponding author
700 1 _ |a Gunnoe, T. Brent
|0 0000-0001-5714-3887
|b 14
|e Corresponding author
773 _ _ |a 10.1021/acscatal.1c01395
|g Vol. 11, no. 12, p. 7223 - 7240
|0 PERI:(DE-600)2584887-2
|n 12
|p 7223 - 7240
|t ACS catalysis
|v 11
|y 2021
|x 2155-5435
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/904166/files/acscatal.1c01395.pdf
856 4 _ |y Published on 2021-06-04. Available in OpenAccess from 2022-06-04.
|u https://juser.fz-juelich.de/record/904166/files/final%20manuscript.pdf
909 C O |o oai:juser.fz-juelich.de:904166
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)168465
910 1 _ |a Max-Planck-Institut Mülheim
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-Juel1)168465
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)162401
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 10
|6 P:(DE-Juel1)162401
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CATAL : 2019
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS CATAL : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21