001     904167
005     20240712112826.0
024 7 _ |a 10.1021/acsaem.1c02278
|2 doi
024 7 _ |a 2128/29917
|2 Handle
024 7 _ |a altmetric:112772857
|2 altmetric
024 7 _ |a WOS:000703338600168
|2 WOS
037 _ _ |a FZJ-2021-05737
082 _ _ |a 540
100 1 _ |a Jiang, Ming
|0 P:(DE-Juel1)173744
|b 0
|u fzj
245 _ _ |a Formation of a Stable Solid-Electrolyte Interphase at Metallic Lithium Anodes Induced by LiNbO 3 Protective Layers
260 _ _ |a Washington, DC
|c 2021
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641395629_10266
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The stability of solid-electrolyte interphase (SEI) surface films at Li-metal anodes is crucial for the safe and durable operation of lithium-metal batteries (LMBs). By combining Li-metal anodes with high-performance Ni-rich transition-metal oxide cathodes, LMBs can meet the goal of a high specific energy density of more than 500 Wh kg–1. However, Li-metal anodes suffer from serious problems, especially the nonuniform lithium deposition and uncontrollable SEI formation. In this work, Li-metal anodes were protected by thin-film LiNbO3 coatings. Full cells composed of protected Li-metal anodes and LiNi0.6Co0.2Mn0.2O2 cathodes were examined electrochemically and by physical characterization methods. Postmortem analyses of pristine and prolonged cycled Li-metal anodes were performed. The results revealed the formation of more stable SEI films at the protected Li-metal anodes in comparison to unprotected electrodes. Consequently, the LiNbO3 layers improved the cycle-life performance of Li-metal anodes in LMBs. Furthermore, X-ray photoelectron spectroscopy (XPS) analyses showed that the reduction of metallic ions stemming from the Ni-rich cathodes was also inhibited by the protective LiNbO3 layers, thereby further controlling the degradation of Li-metal anodes.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhang, Qian
|0 P:(DE-Juel1)176830
|b 1
|u fzj
700 1 _ |a Danilov, Dmitri
|0 P:(DE-Juel1)173719
|b 2
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 3
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acsaem.1c02278
|g Vol. 4, no. 9, p. 10333 - 10343
|0 PERI:(DE-600)2916551-9
|n 9
|p 10333 - 10343
|t ACS applied energy materials
|v 4
|y 2021
|x 2574-0962
856 4 _ |u https://juser.fz-juelich.de/record/904167/files/acsaem.1c02278.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904167
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173744
910 1 _ |a Eindhoven University of Technology
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)173744
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176830
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)176830
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173719
910 1 _ |a Eindhoven University of Technology
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)173719
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165918
910 1 _ |a Eindhoven University of Technology
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)165918
910 1 _ |a University of Technology Sydney
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)165918
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-04
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL ENERG MATER : 2019
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21