000904175 001__ 904175
000904175 005__ 20240712112827.0
000904175 0247_ $$2doi$$a10.1002/adma.202005878
000904175 0247_ $$2ISSN$$a0935-9648
000904175 0247_ $$2ISSN$$a1521-4095
000904175 0247_ $$2Handle$$a2128/30551
000904175 0247_ $$2altmetric$$aaltmetric:103062968
000904175 0247_ $$2pmid$$a33788341
000904175 0247_ $$2WOS$$aWOS:000635235300001
000904175 037__ $$aFZJ-2021-05745
000904175 082__ $$a660
000904175 1001_ $$0P:(DE-HGF)0$$aLiu, Xiangsi$$b0
000904175 245__ $$aSolid‐State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization
000904175 260__ $$aWeinheim$$bWiley-VCH$$c2021
000904175 3367_ $$2DRIVER$$aarticle
000904175 3367_ $$2DataCite$$aOutput Types/Journal article
000904175 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643117552_8120
000904175 3367_ $$2BibTeX$$aARTICLE
000904175 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904175 3367_ $$00$$2EndNote$$aJournal Article
000904175 520__ $$aEnhancing the electrochemical performance of batteries, including the lifespan, energy, and power densities, is an everlasting quest for the rechargeable battery community. However, the dynamic and coupled (electro)chemical processes that occur in the electrode materials as well as at the electrode/electrolyte interfaces complicate the investigation of their working and decay mechanisms. Herein, the recent developments and applications of solid-state nuclear magnetic resonance (ssNMR) and magnetic resonance imaging (MRI) techniques in Li/Na batteries are reviewed. Several typical cases including the applications of NMR spectroscopy for the investigation of the pristine structure and the dynamic structural evolution of materials are first emphasized. The NMR applications in analyzing the solid electrolyte interfaces (SEI) on the electrode are further concluded, involving the identification of SEI components and investigation of ionic motion through the interfaces. Beyond, the new development of in situ NMR and MRI techniques are highlighted, including their advantages, challenges, applications and the design principle of in situ cell. In the end, a prospect about how to use ssNMR in battery research from the perspectives of materials, interface, and in situ NMR, aiming at obtaining deeper insight of batteries with the assistance of ssNMR is represented.
000904175 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000904175 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904175 7001_ $$0P:(DE-HGF)0$$aLiang, Ziteng$$b1
000904175 7001_ $$0P:(DE-HGF)0$$aXiang, Yuxuan$$b2
000904175 7001_ $$0P:(DE-HGF)0$$aLin, Min$$b3
000904175 7001_ $$0P:(DE-Juel1)176714$$aLi, Qi$$b4
000904175 7001_ $$0P:(DE-Juel1)172733$$aLiu, Zigeng$$b5
000904175 7001_ $$0P:(DE-HGF)0$$aZhong, Guiming$$b6
000904175 7001_ $$0P:(DE-HGF)0$$aFu, Riqiang$$b7
000904175 7001_ $$00000-0002-9928-7165$$aYang, Yong$$b8$$eCorresponding author
000904175 773__ $$0PERI:(DE-600)1474949-X$$a10.1002/adma.202005878$$gVol. 33, no. 50, p. 2005878 -$$n50$$p2005878 -$$tAdvanced materials$$v33$$x0935-9648$$y2021
000904175 8564_ $$uhttps://juser.fz-juelich.de/record/904175/files/Advanced%20Materials%20-%202021%20-%20Liu%20-%20Solid%25u2010State%20NMR%20and%20MRI%20Spectroscopy%20for%20Li%20Na%20Batteries%20Materials%20Interface%20and%20In.pdf$$yRestricted
000904175 8564_ $$uhttps://juser.fz-juelich.de/record/904175/files/Solid-state%20NMR%20and%20MRI%20spectroscopy.pdf$$yPublished on 2021-03-31. Available in OpenAccess from 2022-03-31.
000904175 909CO $$ooai:juser.fz-juelich.de:904175$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172733$$aForschungszentrum Jülich$$b5$$kFZJ
000904175 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000904175 9141_ $$y2021
000904175 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000904175 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000904175 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-04
000904175 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904175 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000904175 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-04$$wger
000904175 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000904175 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV MATER : 2019$$d2021-02-04
000904175 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000904175 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2019$$d2021-02-04
000904175 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000904175 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-04$$wger
000904175 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000904175 920__ $$lyes
000904175 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000904175 9801_ $$aFullTexts
000904175 980__ $$ajournal
000904175 980__ $$aVDB
000904175 980__ $$aUNRESTRICTED
000904175 980__ $$aI:(DE-Juel1)IEK-9-20110218
000904175 981__ $$aI:(DE-Juel1)IET-1-20110218