000904178 001__ 904178
000904178 005__ 20240712112827.0
000904178 0247_ $$2doi$$a10.1021/acs.jpcc.0c11335
000904178 0247_ $$2ISSN$$a1932-7447
000904178 0247_ $$2ISSN$$a1932-7455
000904178 0247_ $$2Handle$$a2128/30162
000904178 0247_ $$2WOS$$aWOS:000631433100046
000904178 037__ $$aFZJ-2021-05748
000904178 082__ $$a530
000904178 1001_ $$0P:(DE-Juel1)179453$$aSchalenbach, Maximilian$$b0$$eCorresponding author$$ufzj
000904178 245__ $$aPhysicochemical Mechanisms of the Double-Layer Capacitance Dispersion and Dynamics: An Impedance Analysis
000904178 260__ $$aWashington, DC$$bSoc.$$c2021
000904178 3367_ $$2DRIVER$$aarticle
000904178 3367_ $$2DataCite$$aOutput Types/Journal article
000904178 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642001037_14561
000904178 3367_ $$2BibTeX$$aARTICLE
000904178 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904178 3367_ $$00$$2EndNote$$aJournal Article
000904178 520__ $$aGold, as the noblest metal, is an appropriate model electrode to study electrochemical double layers. This study examines the frequency dispersion of the double layer of polished gold electrodes in perchloric acid with impedance spectroscopy under amplitude, electrolyte concentration, and potential variation. The dynamic perturbation of the double layer equilibrium by impedance measurements shows a constant phase (CP) response (phase angle of approximately −75°), which is responsible for a frequency dispersion of the capacitance. The response is almost independent of the excitation amplitude, for which the CP behavior is ascribed to resistive–capacitive (RC) contributions of the electric field-driven ion separation instead of the previously reported diffusion-limited adsorption processes. The RC character of the double layer in combination with the electrolyte resistance is accompanied by a relaxation that can damp the ion movement and the related ion separation. At the relaxation frequency, the capacitance is found to be independent of the electrolyte concentration, which is attributed to a constant ratio of the contributions of damped ion movement and dielectric polarization of water molecules.
000904178 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000904178 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904178 7001_ $$0P:(DE-Juel1)162243$$aDurmus, Yasin Emre$$b1
000904178 7001_ $$0P:(DE-Juel1)180122$$aRobinson, Shay Alexander$$b2$$ufzj
000904178 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b3$$ufzj
000904178 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b4$$ufzj
000904178 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5
000904178 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.0c11335$$gVol. 125, no. 10, p. 5870 - 5879$$n10$$p5870 - 5879$$tThe journal of physical chemistry <Washington, DC> / C$$v125$$x1932-7447$$y2021
000904178 8564_ $$uhttps://juser.fz-juelich.de/record/904178/files/acs.jpcc.0c11335.pdf$$yRestricted
000904178 8564_ $$uhttps://juser.fz-juelich.de/record/904178/files/post_print.pdf$$yPublished on 2021-03-10. Available in OpenAccess from 2022-03-10.
000904178 909CO $$ooai:juser.fz-juelich.de:904178$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179453$$aForschungszentrum Jülich$$b0$$kFZJ
000904178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162243$$aForschungszentrum Jülich$$b1$$kFZJ
000904178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180122$$aForschungszentrum Jülich$$b2$$kFZJ
000904178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b3$$kFZJ
000904178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b4$$kFZJ
000904178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
000904178 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b5$$kRWTH
000904178 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000904178 9141_ $$y2021
000904178 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000904178 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000904178 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904178 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2019$$d2021-02-02
000904178 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000904178 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000904178 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000904178 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000904178 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000904178 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000904178 920__ $$lyes
000904178 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000904178 9801_ $$aFullTexts
000904178 980__ $$ajournal
000904178 980__ $$aVDB
000904178 980__ $$aUNRESTRICTED
000904178 980__ $$aI:(DE-Juel1)IEK-9-20110218
000904178 981__ $$aI:(DE-Juel1)IET-1-20110218