001     904178
005     20240712112827.0
024 7 _ |a 10.1021/acs.jpcc.0c11335
|2 doi
024 7 _ |a 1932-7447
|2 ISSN
024 7 _ |a 1932-7455
|2 ISSN
024 7 _ |a 2128/30162
|2 Handle
024 7 _ |a WOS:000631433100046
|2 WOS
037 _ _ |a FZJ-2021-05748
082 _ _ |a 530
100 1 _ |a Schalenbach, Maximilian
|0 P:(DE-Juel1)179453
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Physicochemical Mechanisms of the Double-Layer Capacitance Dispersion and Dynamics: An Impedance Analysis
260 _ _ |a Washington, DC
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642001037_14561
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Gold, as the noblest metal, is an appropriate model electrode to study electrochemical double layers. This study examines the frequency dispersion of the double layer of polished gold electrodes in perchloric acid with impedance spectroscopy under amplitude, electrolyte concentration, and potential variation. The dynamic perturbation of the double layer equilibrium by impedance measurements shows a constant phase (CP) response (phase angle of approximately −75°), which is responsible for a frequency dispersion of the capacitance. The response is almost independent of the excitation amplitude, for which the CP behavior is ascribed to resistive–capacitive (RC) contributions of the electric field-driven ion separation instead of the previously reported diffusion-limited adsorption processes. The RC character of the double layer in combination with the electrolyte resistance is accompanied by a relaxation that can damp the ion movement and the related ion separation. At the relaxation frequency, the capacitance is found to be independent of the electrolyte concentration, which is attributed to a constant ratio of the contributions of damped ion movement and dielectric polarization of water molecules.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Durmus, Yasin Emre
|0 P:(DE-Juel1)162243
|b 1
700 1 _ |a Robinson, Shay Alexander
|0 P:(DE-Juel1)180122
|b 2
|u fzj
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 3
|u fzj
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 4
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 5
773 _ _ |a 10.1021/acs.jpcc.0c11335
|g Vol. 125, no. 10, p. 5870 - 5879
|0 PERI:(DE-600)2256522-X
|n 10
|p 5870 - 5879
|t The journal of physical chemistry / C
|v 125
|y 2021
|x 1932-7447
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/904178/files/acs.jpcc.0c11335.pdf
856 4 _ |y Published on 2021-03-10. Available in OpenAccess from 2022-03-10.
|u https://juser.fz-juelich.de/record/904178/files/post_print.pdf
909 C O |o oai:juser.fz-juelich.de:904178
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179453
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162243
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180122
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM C : 2019
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21