| Hauptseite > Publikationsdatenbank > Complexions at the Electrolyte/Electrode Interface in Solid Oxide Cells > print |
| 001 | 904180 | ||
| 005 | 20250514114657.0 | ||
| 024 | 7 | _ | |a 10.1002/admi.202100967 |2 doi |
| 024 | 7 | _ | |a 2128/29849 |2 Handle |
| 024 | 7 | _ | |a WOS:000689640100001 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-05750 |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Türk, Hanna |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Complexions at the Electrolyte/Electrode Interface in Solid Oxide Cells |
| 260 | _ | _ | |a Weinheim |c 2021 |b Wiley-VCH |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1641309538_23792 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Rapid deactivation presently limits a wide spread use of high-temperature solid oxide cells (SOCs) as otherwise highly efficient chemical energy converters. With deactivation triggered by the ongoing conversion reactions, an atomic-scale understanding of the active triple-phase boundary between electrolyte, electrode, and gas phase is essential to increase cell performance. Here, a multi-method approach is used comprising transmission electron microscopy and first-principles calculations and molecular simulations to untangle the atomic arrangement of the prototypical SOC interface between a lanthanum strontium manganite (LSM) anode and a yttria-stabilized zirconia (YSZ) electrolyte in the as-prepared state after sintering. An interlayer of self-limited width with partial amorphization and strong compositional gradient is identified, thus exhibiting the characteristics of a complexion that is stabilized by the confinement between two bulk phases. This offers a new perspective to understand the function of SOCs at the atomic scale. Moreover, it opens up a hitherto unrealized design space to tune the conversion efficiency. |
| 536 | _ | _ | |a 1232 - Power-based Fuels and Chemicals (POF4-123) |0 G:(DE-HGF)POF4-1232 |c POF4-123 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Schmidt, Franz-Philipp |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Götsch, Thomas |0 P:(DE-HGF)0 |b 2 |e Corresponding author |
| 700 | 1 | _ | |a Girgsdies, Frank |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Hammud, Adnan |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Ivanov, Danail |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Vinke, Izaak C. |0 P:(DE-Juel1)129936 |b 6 |
| 700 | 1 | _ | |a de Haart, L. G. J. |0 P:(DE-Juel1)129952 |b 7 |
| 700 | 1 | _ | |a Eichel, Rüdiger-A. |0 P:(DE-Juel1)156123 |b 8 |
| 700 | 1 | _ | |a Reuter, Karsten |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Schlögl, Robert |0 P:(DE-HGF)0 |b 10 |
| 700 | 1 | _ | |a Knop-Gericke, Axel |0 P:(DE-HGF)0 |b 11 |
| 700 | 1 | _ | |a Scheurer, Christoph |0 P:(DE-Juel1)184961 |b 12 |
| 700 | 1 | _ | |a Lunkenbein, Thomas |0 P:(DE-HGF)0 |b 13 |
| 773 | _ | _ | |a 10.1002/admi.202100967 |g Vol. 8, no. 18, p. 2100967 - |0 PERI:(DE-600)2750376-8 |n 18 |p 2100967 - |t Advanced materials interfaces |v 8 |y 2021 |x 2196-7350 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/904180/files/Adv%20Materials%20Inter%20-%202021%20-%20T%20rk%20-%20Complexions%20at%20the%20Electrolyte%20Electrode%20Interface%20in%20Solid%20Oxide%20Cells.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:904180 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a TU München |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)129936 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)129952 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)156123 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 8 |6 P:(DE-Juel1)156123 |
| 910 | 1 | _ | |a TU München |0 I:(DE-HGF)0 |b 9 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin |0 I:(DE-HGF)0 |b 9 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin |0 I:(DE-HGF)0 |b 10 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin |0 I:(DE-HGF)0 |b 11 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a TU München |0 I:(DE-HGF)0 |b 12 |6 P:(DE-Juel1)184961 |
| 910 | 1 | _ | |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin |0 I:(DE-HGF)0 |b 12 |6 P:(DE-Juel1)184961 |
| 910 | 1 | _ | |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin |0 I:(DE-HGF)0 |b 13 |6 P:(DE-HGF)0 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1232 |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-28 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV MATER INTERFACES : 2019 |d 2021-01-28 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-28 |w ger |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-28 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-28 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-28 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
| 981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|