001     904180
005     20250514114657.0
024 7 _ |a 10.1002/admi.202100967
|2 doi
024 7 _ |a 2128/29849
|2 Handle
024 7 _ |a WOS:000689640100001
|2 WOS
037 _ _ |a FZJ-2021-05750
082 _ _ |a 600
100 1 _ |a Türk, Hanna
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Complexions at the Electrolyte/Electrode Interface in Solid Oxide Cells
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641309538_23792
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Rapid deactivation presently limits a wide spread use of high-temperature solid oxide cells (SOCs) as otherwise highly efficient chemical energy converters. With deactivation triggered by the ongoing conversion reactions, an atomic-scale understanding of the active triple-phase boundary between electrolyte, electrode, and gas phase is essential to increase cell performance. Here, a multi-method approach is used comprising transmission electron microscopy and first-principles calculations and molecular simulations to untangle the atomic arrangement of the prototypical SOC interface between a lanthanum strontium manganite (LSM) anode and a yttria-stabilized zirconia (YSZ) electrolyte in the as-prepared state after sintering. An interlayer of self-limited width with partial amorphization and strong compositional gradient is identified, thus exhibiting the characteristics of a complexion that is stabilized by the confinement between two bulk phases. This offers a new perspective to understand the function of SOCs at the atomic scale. Moreover, it opens up a hitherto unrealized design space to tune the conversion efficiency.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schmidt, Franz-Philipp
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Götsch, Thomas
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Girgsdies, Frank
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hammud, Adnan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ivanov, Danail
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Vinke, Izaak C.
|0 P:(DE-Juel1)129936
|b 6
700 1 _ |a de Haart, L. G. J.
|0 P:(DE-Juel1)129952
|b 7
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 8
700 1 _ |a Reuter, Karsten
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Schlögl, Robert
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Knop-Gericke, Axel
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Scheurer, Christoph
|0 P:(DE-Juel1)184961
|b 12
700 1 _ |a Lunkenbein, Thomas
|0 P:(DE-HGF)0
|b 13
773 _ _ |a 10.1002/admi.202100967
|g Vol. 8, no. 18, p. 2100967 -
|0 PERI:(DE-600)2750376-8
|n 18
|p 2100967 -
|t Advanced materials interfaces
|v 8
|y 2021
|x 2196-7350
856 4 _ |u https://juser.fz-juelich.de/record/904180/files/Adv%20Materials%20Inter%20-%202021%20-%20T%20rk%20-%20Complexions%20at%20the%20Electrolyte%20Electrode%20Interface%20in%20Solid%20Oxide%20Cells.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904180
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a TU München
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129936
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129952
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)156123
910 1 _ |a TU München
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-HGF)0
910 1 _ |a TU München
|0 I:(DE-HGF)0
|b 12
|6 P:(DE-Juel1)184961
910 1 _ |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin
|0 I:(DE-HGF)0
|b 12
|6 P:(DE-Juel1)184961
910 1 _ |a Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin
|0 I:(DE-HGF)0
|b 13
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER INTERFACES : 2019
|d 2021-01-28
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21