001     904184
005     20240712112913.0
024 7 _ |a 10.1016/j.ces.2021.116863
|2 doi
024 7 _ |a 0009-2509
|2 ISSN
024 7 _ |a 1873-4405
|2 ISSN
024 7 _ |a 2128/30432
|2 Handle
024 7 _ |a WOS:000702871400012
|2 WOS
037 _ _ |a FZJ-2021-05754
082 _ _ |a 660
100 1 _ |a Fleitmann, Lorenz
|0 P:(DE-HGF)0
|b 0
245 _ _ |a COSMO-susCAMPD: Sustainable solvents from combining computer-aided molecular and process design with predictive life cycle assessment
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642777232_18986
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Sustainable solvents are crucial for chemical processes and can be tailored to applications by Computer-Aided Molecular and Process Design (CAMPD). Recent CAMPD methods consider not only economics but also environmental hazards and impacts. However, holistic environmental assessment needs to address the complete life cycle of solvents. Here, we propose a CAMPD framework integrating Life Cycle Assessment (LCA) of solvents from cradle-to-grave: COSMO-susCAMPD. The framework builds on the COSMO-CAMPD method for predictive design of solvents using COSMO-RS and pinch-based process models. Cradle-to-grave LCA is enabled by combining predictive LCA from cradle-to-gate using an artificial neural network with gate-to-grave life cycle inventory data from the process models. The framework is applied to design solvents in a hybrid extraction-distillation process. The results highlight the need for cradle-to-grave LCA as objective function: Heuristics, economics, or cradle-to-gate LCA lead to suboptimal solvent choices. COSMO-susCAMPD thus enables the holistic environmental design of solvents using cradle-to-grave LCA.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kleinekorte, Johanna
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Leonhard, Kai
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.ces.2021.116863
|g Vol. 245, p. 116863 -
|0 PERI:(DE-600)1501538-5
|p 116863 -
|t Chemical engineering science
|v 245
|y 2021
|x 0009-2509
856 4 _ |u https://juser.fz-juelich.de/record/904184/files/1-s2.0-S0009250921004280-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904184
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a ETH Zurich
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)172023
910 1 _ |a ETH Zurich
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)172023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172023
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM ENG SCI : 2019
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21