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GRAPHICAL ABSTRACT

Molecular design of sustainable solvents
over the full life cycle

via predictive Life Cycle Assessment

ABSTRACT

Sustainable solvents are crucial for chemical processes and can be tailored to applications by Computer-
Aided Molecular and Process Design (CAMPD). Recent CAMPD methods consider not only economics but
also environmental hazards and impacts. However, holistic environmental assessment needs to address
the complete life cycle of solvents. Here, we propose a CAMPD framework integrating Life Cycle
Assessment (LCA) of solvents from cradle-to-grave: COSMO-susCAMPD. The framework builds on the
COSMO-CAMPD method for predictive design of solvents using COSMO-RS and pinch-based process mod-
els. Cradle-to-grave LCA is enabled by combining predictive LCA from cradle-to-gate using an artificial
neural network with gate-to-grave life cycle inventory data from the process models. The framework
is applied to design solvents in a hybrid extraction-distillation process. The results highlight the need
for cradle-to-grave LCA as objective function: Heuristics, economics, or cradle-to-gate LCA lead to subop-
timal solvent choices. COSMO-susCAMPD thus enables the holistic environmental design of solvents

using cradle-to-grave LCA.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Growing environmental concerns have recently increased the
awareness of sustainability in the design of chemical processes
(Bakshi, 2019). The term sustainability is defined by three dimen-
sions: an economic, a social and an environmental dimension
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(Brown et al., 1987). Both economics and environmental impacts of
many chemical processes depend strongly on the employed sol-
vents (Clarke et al., 2018; Jimenez-Gonzalez, 2019; Zhou et al,,
2020). Therefore, sustainable processes with economic success
and minimum environmental impact require the selection of opti-
mal solvents.

Today, optimal solvents can be tailored to chemical processes
by Computer-Aided Molecular and Process Design (CAMPD).
CAMPD methods optimise the molecular structure of candidate
solvents and the process simultaneously for optimum process per-
formance (Papadopoulos et al., 2018). Thereby, CAMPD methods
allow for the targeted exploration of vast molecular design spaces
at low cost. All CAMPD methods employ predictive thermody-
namic models to link the molecular structures to the process per-
formance. The estimation of the thermodynamic properties from
the molecular structures bridges the scales between molecules
and processes to predict process performance.

So far, CAMPD methods in literature have mainly focused on
economics and technical process performance (Zhou et al., 2020;
Gertig et al., 2020). However, the design of environmentally sound
chemical processes requires a broader objective in CAMPD: Not
only process performance and economics but also environmental
impacts need to be optimised. To capture environmental impacts,
CAMPD needs to integrate environmental assessment (Zhou
et al., 2020; Gertig et al., 2020).

Several CAMPD methods already integrated environmental
assessment, e.g. the assessment of environmental impact poten-
tials or hazards. Many of these approaches are based on metrics
and guidelines for green solvents (Soh and Eckelman, 2016). In par-
ticular, the systematic assessment of indicators for Environmental,
Health and Safety hazards (EHS) (Adu et al., 2008) has been applied
successfully in CAMPD problems. For example, systematic screen-
ing approaches evaluate candidates based on environmental data-
bases and Quantitative Structure-Activity Relationship (QSAR)
toolboxes (McBride et al., 2018; Linke et al., 2020; Song et al.,
2020). If CAMPD problems are formulated as an integrated mathe-
matical optimisation problem, solution algorithms require an auto-
mated, integrated evaluation of EHS criteria. For this purpose,
predictive models are frequently employed, e.g. group-
contribution models fitted to experimental data (Papadopoulos
et al., 2010; Schilling et al., 2017; Ten et al., 2017; Ooi et al.,
2018; Jonuzaj et al., 2019; Ten et al., 2020; Ten et al., 2021). All
approaches have in common that they evaluate environmental
impact potentials from molecular properties of the candidate
molecules.

However, environmental assessment has to go beyond the envi-
ronmental impact potential of the molecules, which is a molecular
property, such as the global warming potential (Hellweg et al.,
2004). For a holistic assessment, CAMPD needs to consider the
environmental impacts of the full life cycle of a molecule, including
emissions caused during production, use and disposal (Jimenez-
Gonzalez, 2019; Chemmangattuvalappil, 2020). A broadly accepted
method for the holistic environmental assessment is Life Cycle
Assessment (LCA). LCA is an ISO-normed method (ISO 14040,
2006) considering emissions of all life cycle stages from cradle to
grave of a substance. For this purpose, detailed mass and energy
balances summarise all energy and mass flows from and to the
environment.

As a consequence of the holistic analysis, LCA helps to avoid
problem shifting between life cycle stages or environmental
impacts. However, a cradle-to-grave LCA generally requires much
information on a substance: mass and energy flows of production,
use and disposal (Hellweg and Mila i Canals, 2014).

In CAMPD, available data on candidate solvents is usually min-
imal, in particular on in silico designed solvents. For economic
objectives, CAMPD methods have already been equipped with pre-
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dictive tools to close data gaps: Predictive thermodynamic models
estimate thermodynamic properties so that process simulation can
be performed for economic assessment. Analogously, CAMPD
needs to integrate predictive LCA approaches for environmental
assessment. Similarly to the prediction of thermodynamic proper-
ties from thermodynamic models, environmental impacts of candi-
date solvents need to be predicted given their molecular structure
(Kleinekorte et al., 2020).

In literature, predictive LCA has been approached by two main
routes: (1) The prediction of Life Cycle Inventory (LCI) and (2)
the direct prediction of the Life Cycle Impact Assessment (LCIA).
The life cycle inventory is the basis for life cycle impact assessment
and provides the “bill of materials” of the life cycle. To yield ulti-
mately environmental impacts, the LCI needs to be multiplied by
characterisation factors. LCI is frequently predicted from estimates
for energy and mass flow from generic flowsheets (Righi et al.,
2018; Parvatker and Eckelman, 2020). In contrast, the direct pre-
diction of the LCIA has been investigated by multi-linear regression
(Calvo-Serrano et al., 2018; Calvo-Serrano et al., 2019) and Artifi-
cial Neural Networks (ANN) (Song et al., 2017).

Recently, predictive LCA has successfully been combined with
molecular design for the first time to the best of our knowledge:
Papadopoulos et al. formulated an integrated CAMD problem
including predictive LCA and predictive EHS scores
(Papadopoulos et al., 2020). For the predictive LCA, the authors
use the ANN-based FineChem model (Wernet et al., 2009) to esti-
mate the specific impacts of solvent production per kilogram sol-
vent. For the predictive EHS scores, (Papadopoulos et al., 2020)
employ group contribution and molecular similarity approaches.
By combining these prediction approaches into one integrated
multi-objective CAMD problem, desired solvent properties are
optimised simultaneously with environmental impact scores, e.g.
maximising specific solvent density and minimising specific global
warming impact and EHS scores.

The current approach limits the LCA scope to a so-called cradle-
to-gate system boundary, considering only emissions caused dur-
ing the solvent production per kilogram solvent. However, the
amount of solvent required by the process varies greatly depend-
ing on the solvent performance in the process. Moreover, the pro-
cess corresponds to the use phase of the solvent life cycle, and the
solvent properties directly impact the process performance and the
emissions of the use phase. Finally, the emissions from solvent dis-
posal depend on the solvent loss during the use phase. Thus, a
cradle-to-gate assessment does not capture the full environmental
impacts of the candidate solvents. To avoid problem shifting
between life cycle stages, CAMPD needs to consider all solvent-
related emissions within a cradle-to-grave system boundary.

In this work, we propose a CAMPD framework with predictive
LCA that accounts for the full solvent life cycle, including use and
disposal. The CAMPD framework builds on the COSMO-CAMPD
method (Scheffczyk et al., 2018) that is extended by environmental
assessment using predictive LCA. As a result, we present
COSMO-CAMPD with an environmental objective: COSMO-
susCAMPD.

COSMO-susCAMPD overcomes the limitations of previous
CAMPD approaches by exploiting process data from the process
model in COSMO-CAMPD as LCI for solvent use and disposal. To
predict the specific cradle-to-gate impacts, molecular descriptors
from predictive thermodynamics serve as an input for an ANN.
By combining the LCI from process models and cradle-to-gate
impacts of solvent production, we achieve a full LCA for every can-
didate solvent covering the system boundary from cradle-to-grave.
As a result, COSMO-susCAMPD provides a framework for inte-
grated computer-aided design of solvents and processes for both
maximal process performance and minimal environmental impact
with cradle-to-grave system boundary.
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This paper is structured as follows: In Section 2, the COSMO-
susCAMPD framework is described. We explain not only the details
of the framework, but also how we set up the ANN for predictive
LCA and discuss its accuracy. Section 3 introduces a case study
and describes the application of COSMO-susCAMPD. We present
results of the optimisation and discuss consequences from the
integrated design. Finally, conclusions are drawn in Section 4.

2. COSMO-susCAMPD: A framework for the design of
sustainable solvents and processes

The design of optimal solvents for maximal process perfor-
mance and minimal environmental impacts requires the combina-
tion of two methods: (1) A method for integrated molecular and
process design (CAMPD) and (2) a method for predictive cradle-
to-grave Life Cycle Assessment (LCA).

1. Solution algorithms for CAMPD problems usually combine three
steps (Papadopoulos et al., 2018):

(a) First, candidate molecules are generated by an algorithm, e.g.
by a combination of functional groups or molecular frag-
ments. The algorithm needs to be able to change the molecu-
lar structures systematically to explore a given design space,
while structural feasibility is ensured for all candidates.

(b) Secondly, for each candidate molecules, thermodynamic
properties are predicted using predictive thermodynamic
models. Thermodynamic properties are required to bridge
the scales between the candidate molecules and the pro-
cess, e.g. by prediction of activity coefficients or vapour
pressures.

(c) Finally, the candidate molecules are evaluated by an objec-
tive. The objective function quantifies the fit of the candi-
date molecules to the process application, e.g. by a
particular thermodynamic property, a process variable or
an economic metric.

2. A method for predictive LCA of candidate molecules requires
the assessment of all stages of a molecule’s life cycle: the pro-
duction, the use phase and the disposal. In literature, predictive
methods for particular life cycle stages have been proposed:
(a) The environmental impacts from the production can be esti-

mated by molecular structure models that use molecular
descriptors to predict the cradle-to-gate LCIA, e.g. using
multi-linear regression (Calvo-Serrano et al., 2018) or ANN
(Song et al., 2017).

(b) The use phase of a molecule can be modelled by generalised
flowsheets estimating the gate-to-gate energy demand of
processes (Jiménez-Gonzalez et al., 2000; Parvatker and
Eckelman, 2020). Afterwards, this LCI is translated into LCIA
by multiplying the energy demand with the corresponding
characterisation factors.

(c) Predictive LCA approaches dealing with the disposal of
molecules have not been published so far. However, proxies
from LCI databases for generic wastewater treatment or
waste incineration can be used (Canals et al.,, 2011).

Methods for predictive LCA of each life cycle stage are combined
with a CAMPD method in the proposed COSMO-susCAMPD frame-
work (Fig. 1) to yield a fully predictive framework with cradle-to-
grave environmental assessment. COSMO-susCAMPD is introduced
in the following Section 2.1.

2.1. Implementation of the COSMO-susCAMPD framework

The COSMO-susCAMPD framework expands COSMO-CAMPD by
a predictive LCA method as follows:
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Fig. 1. COSMO-susCAMPD: Fully automated framework to design environmentally
beneficial solvents by combining COSMO-CAMPD with predictive LCA.

1. The basis for COSMO-susCAMPD is the COSMO-CAMPD method
initially developed to design solvents for optimum process per-
formance and economic objectives (Scheffczyk et al., 2018). The
CAMPD algorithm involves three steps in each iteration of the
optimisation procedure:

(a) Generation of a molecular structure: The generation of can-
didate solvents is part of the molecular optimisation using
the genetic algorithm LEA3D (Douguet et al., 2005). LEA3D
builds molecules from 3D-molecular fragments. The frag-
ments are specified in the initialisation of the algorithm
via a fragment database. The fragment database is created
by the users to reflect their preferences. The algorithm
starts by randomly combining fragments for the first gener-
ation of molecules. After these molecules have been evalu-
ated by the constraints and the objective function (Steps
1b and 1c), LEA3D alters the population of molecules for
each following generation using genetic operations on the
candidate molecules, i.e. crossover and mutation. Thereby,
LEA3D explores the vast molecular design space towards
an objective function. After a predefined number of genera-
tions is reached, the molecular optimisation stops. Already
during the generation of the molecular structures, LEA3D
ensures chemical feasibility of the molecules, e.g., all candi-
date molecules fulfil the octet rule. Moreover, the 3D-
structure of the candidate molecules allows evaluating con-
straints on the molecular size or functional groups. If such
constraints exist, undesirable candidate molecules can
already be discarded before the time-consuming computa-
tional steps.

(b) Prediction of thermodynamic properties: For each candi-
date solvent of each generation, thermodynamic properties
are obtained using the predictive thermodynamic model
COSMO-RS (Klamt et al., 2010). COSMO-RS uses surface
charge interactions from quantum chemical Density
Functional Theory DFT (Kohn and Sham, 1965). The compu-
tationally expensive DFT-calculations are performed in par-
allel for each generation based on the 3D-molecular
structure of the candidate solvents and provide the surface
charge densities of the molecules serving as input to the
COSMO-RS calculations. By applying statistical thermo-
dynamics to the interactions between the surface charges,
COSMO-RS is then able to predict many thermodynamic
properties of pure components and mixtures, such as
activity coefficients, Liquid-Liquid-Equilibria (LLE) or
vapour pressures with low computational effort.
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The thermodynamic properties are used for the evaluation
of constraints, e.g., the existence of LLE or an appropriate
boiling point. These constraints on thermodynamic proper-
ties can reduce the search space and help to identify feasible
solvents. In addition, in COSMO-susCAMPD, the thermody-
namic properties serve as an input for the ANN to predict
cradle-to-gate impacts.

(c) Process model evaluation: For each candidate solvent of
each generation that fulfils property constraints, a process
flowsheet is evaluated. The process is modelled using
pinch-based process models for each unit operation
(Bausa et al., 1998; Redepenning et al., 2017). Pinch-based
process models are reduced-order models that provide an
accurate and efficient calculation of process units assuming
minimum thermodynamic driving force. By this assump-
tion, computationally demanding tray-by-tray calculations
can be omitted, but no simplifications on thermodynamic
modelling are required. In literature, it has been shown that
the pinch-based process models agree well with results
from rigorous tray-by-tray models for operation near the
thermodynamic minimum (Scheffczyk et al, 2018;
Redepenning et al., 2017). As a result, the pinch-based pro-
cess models yield a maximum achievable process perfor-
mance for each solvent considering full equilibrium
thermodynamics. Due to the computational efficiency of
the process evaluation, we can optimise the process flow-
sheet for each solvent. In COSMO-susCAMPD, the process
model not only evaluates process performance but also pro-
vides process data as LCI of the use phase for gate-to-gate
LCIA.

2. To enable an environmental objective in COSMO-susCAMPD, we
add a predictive LCA for every candidate solvent to COSMO-
CAMPD. For this purpose, we divide the life cycle of the candi-
date solvents into three stages (Fig. 2): (a) solvent production
(cradle-to-gate), (b) solvent use in the process (gate-to-gate)
and (c) solvent disposal (gate-to-grave).

(a) Solvent production: We estimate environmental impacts
from solvent production (cradle-to-gate system boundary)
using an ANN. As shown by Wernet et al. (2008), ANNs out-
perform other regression methods such as multi-linear
regression in LCA applications. The ANN uses molecular
and thermodynamic solvent properties as input as already
proposed in the literature (Song et al, 2017; Calvo-
Serrano et al., 2018; Papadopoulos et al., 2020). In particu-
lar, thermodynamic properties of the candidate solvents
from COSMO-RS are included. Properties calculated from
COSMO-RS have already been proven to be suitable molec-
ular descriptors by Calvo-Serrano et al. (2019). In COSMO-
susCAMPD, molecular descriptors from COSMO-RS provide
the additional advantage that a consistent set of descriptors
is used for both the LCA and the techno-economic assess-
ment. More details on the training and set-up of ANN are
given in Section 2.2.

(b) Solvent use: Impacts related to the solvent use in the pro-
cess (gate-to-gate system boundary) are calculated from
the life cycle inventories provided by the process model.
Process evaluation solves the mass and energy balances
providing all required LCI information for LCIA. In particular,
the minimum amount of solvent used in the process is
determined accurately by the pinch-based process models.
Knowledge of the amount of solvent used allows for a com-
parison of candidate solvents in terms of process-specific
objectives rather than a specific comparison per kilogram
of solvent. The LCIA is performed by multiplying the LCI
with specific environmental impacts from LCA databases
or the ANN prediction. For example, the process heat
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Fig. 2. Life cycle stages of a solvent and frequently used system boundaries in
environmental assessment. In COSMO-susCAMPD, cradle-to-grave system bound-
aries are enabled by combining an artificial neural network with pinch-based and
aggregated process models.

demand is converted into emissions using the specific
impact for natural gas combustion per megajoule heat
obtained from the GaBi database (Thinkstep, 2012). Addi-
tional emissions, such as fugitive emissions, are not
considered.

Solvent disposal: For the disposal of solvents (gate-to-grave
system boundary), aggregated process models are known in
the literature. Here, we model solvent disposal by LCIA for
wastewater treatment based on the mass of wastewater
including solvent contamination. The literature model
yields a specific impact per kilogram of wastewater (Ruiz,
2019). The gate-to-grave LCIA is completed by multiplying
the specific impact with the flow rate of wastewater. Both
the flow rate and the contamination of wastewater with
the solvent result from the process model evaluation.

—
g
~

By combining COSMO-CAMPD and predictive LCA as described,
COSMO-susCAMPD vyields a fully automated and predictive frame-
work for solvent design. As an objective for the design, process per-
formance, environmental impacts from cradle-to-grave as well as
combined objective functions are possible. Alternatively, the pre-
dictive LCA can serve as a constraint.

2.2. Training and accuracy of the artificial neural network

The Artificial Neural Network (ANN) is used as a regression
model, which is trained on known environmental impacts of sol-
vents from databases or literature. After training, the ANN is cap-
able of predicting environmental impacts for candidate solvents
similar to the solvents from the training data. Here, we use consis-
tent cradle-to-gate LCA data from the GaBi Database (Thinkstep,
2012) on 73 solvents for training purpose. While the data set is
small, it is important to use consistent, high-quality data and to
avoid data based on generic heuristics. Thus, the present data set
is the largest high-quality data set available to the authors. To facil-
itate the set-up of the ANN, we use an automated framework in
four steps (Fig. 3) as already outlined by Kleinekorte et al. (2019).

1. First, suitable features for the ANN are selected from various
molecular descriptors using linear stepwise regression as a fea-
ture selection method (Draper and Smith, 1998; Lindsey and
Sheather, 2010). For all molecules in the training data, various
molecular descriptors are calculated as prospective features,
e.g. information on the molecular structure, such as the number
of carbon or oxygen atoms, or thermodynamic properties from
COSMO-RS, such as the normal boiling point or the standard
enthalpy of formation. The molecular descriptors which show
the highest correlation with the environmental impacts are
selected as features (see Supporting Information for details).
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Fig. 3. Flow diagram for the automated set-up of the artificial neural network.

2. Secondly, the training data is split into three sets to allow for

training, validation and testing of the ANN (Goodfellow et al.,
2016). At first, a test set is separated from the training data
for final accuracy evaluation of the ANN. The test set contains
approximately 10% of the training data and is not used within
the training or validation of the ANN to obtain a final accuracy
value on unseen data. Extreme points at the edge of the data set
are not selected for the test set due to the low extrapolation
capability of the ANN beyond the training set. Afterwards, the
remaining training data is split ten times into a training and val-
idation set to increase the generalizability of the final architec-
ture. Validation sets are specified to include approximately 10%
of the training data as well.
All sets are chosen so that the statistical distribution of the test,
training and validation sets are similar (Goodfellow et al,
2016). Therefore, we first randomly generate various test, train-
ing and validation sets. For each random set, we calculate the
Kulback-Leibler divergence based on the features as a measure
of statistical distribution for data sets (Kullback and Leibler,
1951). A low Kulback-Leibler divergence indicates similar and
uniform statistical distribution between the data sets, which
is a requirement for the training and application of ANN. There-
fore, the test set with the lowest Kullback-Leibler divergence is
chosen for final accuracy evaluation. For training and validation
sets, the ten splits with the lowest Kulback-Leibler divergence
are chosen for the training of the ANN.

3. Thirdly, the hyperparameters of the ANN, e.g. the number of
layers or the number of neurons per layer, are selected. Setting
the hyperparameters is not trivial and has a considerable influ-
ence on the accuracy of the ANN. Therefore, we use a Genetic
Algorithm (GA) (The MathWorks, 2018) to find optimal hyper-
parameters. The objective of the GA is the minimisation of the
average Root Mean Squared Error (RMSE) of the ANN predic-
tions on the validation sets:

10 val
RMSE;
ny R )

i=1
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For each instance of the GA, 10 ANNs are trained with the same
hyperparameters using the 10 training sets. Afterwards, each
ANN is used to predict the corresponding validation set, and
the RMSE of the prediction is calculated. By averaging the RMSE
over the 10 sets, we flatten extreme prediction errors due to the
small set sizes and enable bootstrapping and accuracy evalua-
tion (Carney et al., 1999).

To avoid local optima due to the statistical optimisation, we per-
form 100 runs of the GA from random starting points by varying
the initial hyperparameters.

4. Finally, we train the ANN with the optimise architecture on the
combined training and validation set to perform an accuracy
evaluation by predicting the test set. The test set has neither
been used for training of the ANN nor the optimisation of the
hyperparameters. Therefore, the ANN predicts the unseen test
set with similar accuracy as the molecules designed within
the COSMO-susCAMPD framework.

After applying the described set-up, we obtain one trained ANN
with optimal hyperparameters and an estimation of its accuracy
for one impact category. The ANN can directly be integrated for
the prediction of cradle-to-gate impacts for candidate solvents.

In the following, we investigate the accuracy of the ANN predic-
tions before we move to the application of COSMO-susCAMPD.
Using the described framework, we set up one ANN for each of
the 17 midpoint impact categories from the ReCiPe method
(Goedkoop et al., 2008). In the main text, we focus only on the
two LCA impact categories, for which the most reliable LCIA meth-
ods are available: Climate Change (CC) and Ozone Depletion (OD)
(European Commission-Joint Research Centre, 2011). Details on
all 17 impact categories can be found in the Supporting
Information.

We measure the accuracy of predictions with the coefficient of

determination (R?) and the normalised RMSE (nRMSE):

[ (i -3) 09|

R® = — (2)
S (#-3) Toi-»?
> v
nRMSE=—Y_— 1 3)

max — Ymin

The coefficient of determination R? indicates the trend-capturing
correlation between the ANN predictions and the database values
(Alexander et al., 2015). The nRMSE indicates how widely the pre-
dictions deviate on average from the database values (Otto et al.,
2018). We report the normalised RMSE, which is normalised by
the range of the database values so that all impact categories are
comparable.

Currently, the availability of LCA data on solvents is limited for
the training of an ANN. Our training data contains only 73 solvents,
which is a comparably small number for machine learning
approaches (Alwosheel et al., 2018). Therefore, the current accu-
racy of the ANN predictions is limited as well (c.f. Table 1). On aver-
age, the ANN achieves an already acceptable nRMSE of 10%, but the

average R? is low with a value of only 0.43. The low R? can be
explained from the small training data set: If very few data points

are used, the R? value is highly sensitive. Due to the small set sizes,
inaccurate predictions for a few solvents decrease the R? already
significantly despite otherwise acceptable predictions. Therefore,
it is important to focus not only on the R? but also consider the
(n)RMSE. For Ozone Depletion, for example, the nRMSE of the val-
idation and of the test set match very well, indicating acceptable

predictions despite large differences in the R?. In particular, the
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Table 1
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Prediction accuracy of the artificial neural network for the impact category Climate Change and Ozone Depletion, as well as an average of all 17 regarded impact categories in
terms of coefficient of determination (R?) and normalised root mean squared error (nRMSE).

Data set Climate Change

Average of
all impact categories

Ozone Depletion

R?

nRMSE

R2?

nRMSE

R2

nRMSE

Training set
Validation set
Test set

0.44
0.56
0.51

17%
14%
9%

0.81
0.76
0.08

8%
16%
15%

0.57
0.56
0.43

12%
14%
10%

predictions deviate significantly from the database values for areas
of sparse training data. In these areas, a high variance between the
10 ANN predictions can be observed as well, indicating high sensi-
tivity on the training set due to limited data. For example, for the
impact on Climate Change (CC), the predictions vary between 5-

8 kg CO,-eq. l(gc’h]em_ for a few solvents (see Fig. 4A). Therefore, some
solvents with extreme impacts on CC at the edges of the training
data are currently predicted inaccurately and need future improve-
ment. Similarly, the ANN yields a few physically not meaningful
results, i.e. negative values for some impact categories, which are
removed when applying the ANN in COSMO-susCAMPD.
However, an already acceptable accuracy of prediction is
achieved for the majority of solvents and, in particular, in ranges
with sufficient data (Fig. 4). Generally, the predictions meet the
database values with acceptable confidence except for a few strong
outliers in sparse regions. The accuracy is comparable to the state-
of-the-art in literature: E.g. the estimation of CC had a coefficient of
determination R? of 0.41 in work by Wernet et al. (2009), or a coef-

ficient of determination R? of 0.48 in work by Song et al. (2017).
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Future improvement of accuracy is expected with more data avail-
able. For the design of solvents, ultimately, the uncertainty of the
final cradle-to-grave environmental impact is most relevant.
Therefore, we investigate how the uncertainties caused by the
ANN predictions propagate to the cradle-to-grave impact in
Section 3.2.

3. Case study and results: Design of benign solvents for hybrid
extrac-tion-distillation of y-valerolactone

To demonstrate the application of COSMO-susCAMPD, we
investigate the hybrid extraction-distillation of 7y-valerolactone
(GVL), as proposed by Murat Sen et al. (2012). Recently, GVL has
attracted attention as a bio-derived platform chemical, a green sol-
vent or a renewable fuel (Zhang, 2016). A promising pathway to
GVL is the production from lignocellulosic biomass and purifica-
tion from aqueous solution using hybrid extraction-distillation.
As an extraction solvent, n-butyl acetate has been suggested in
the literature (Murat Sen et al., 2012). Therefore, n-butyl acetate
serves as a benchmark for the solvent design with COSMO-
susCAMPD.

3.1. Problem specification

We consider the process of GVL purification consisting of an
extraction column, a distillation column and a decanter (Fig. 5). A
mixture of GVL and water is fed to the extraction column, where
the solvent extracts the GVL entirely into the extract stream. The
resulting extract is split in the distillation column into pure GVL
at the bottom and a water-solvent stream at the top of the distilla-
tion column. The water-solvent stream is recycled to the extraction
column. If the water-solvent stream splits into two liquid phases,
the aqueous phase is separated from the organic phase in a decan-
ter, and only the organic phase is fed back into the extraction col-
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Fig. 4. Accuracy of the prediction of the ANN for the LCA impact categories Climate
Change (CC) and Ozone Depletion (OD). The confidence interval is calculated from
the standard deviation of the predictions on the test set.

umn. Both the raffinate and the aqueous phase from the decanter,
if present, are sent to wastewater treatment.

Candidate solvents are considered for property prediction and
process evaluation if they are expected to be stable within the
extraction process based on their functional groups and if they
are smaller than 13 non-hydrogen atoms. The process specifica-
tions further constrain suitable candidate solvents based on their
physical properties: Suitable candidate solvents must have a
liquid-liquid-equilibrium with water. Furthermore, the candidate
solvents must not exceed the boiling point for GVL to allow for sep-
aration of GVL in the bottom of the distillation column. For simple
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Fig. 5. Flowsheet of the extraction-distillation process for y-valerolactone purification.

distillation, candidate solvents also must not form an azeotrope
with GVL. The constraints on the molecular properties are evalu-
ated for each candidate solvent in each generation of the genetic
algorithm with the thermodynamic properties predicted by
COSMO-RS (Step 1b of the COSMO-susCAMPD framework). Candi-
date solvents that do not fulfil these requirements are discarded
and not considered as suitable candidate solvent for subsequent
process optimisation and environmental assessment.

For each suitable candidate solvent, we first optimise the pro-
cess settings, i.e., the temperature of the extraction, to obtain the
minimum energy demand for distillation (Step 1c). For the envi-
ronmental assessment (Step 2), we consider three types of emis-
sions for the process: The emissions from solvent production due
to solvent make-up, the emissions from solvent use due to energy
consumption in the distillation reboiler, and the emissions from
solvent disposal in wastewater treatment. For each candidate sol-
vent, we predict the cradle-to-gate impacts of all 17 LCA impact
categories using the ANNs (Step 2a) and conduct the full cradle-
to-grave LCA exploiting the LCI from the process evaluation for
use phase (Step 2b) and solvent disposal (Step 2c). All emissions
are calculated for the functional unit of 1 kmol of GVL produced
in this process.

In total, four optimisation runs of the genetic algorithm LEA3D
are performed to find an optimal solvent for the GVL purification.
For molecular design, all functional groups are included that were
in the training set of the ANN, e.g. alkane-, benzene-, amine-,
sulfone- keto- or hydroxyl-fragments (see Supporting Informa-
tion). Thus, all molecules that are designed should be predictable
by the ANN without forcing the ANN to extrapolate. For all optimi-
sation runs, the objective is to minimise the cradle-to-grave impact
on Climate Change (CCrdie_to-grave) by sSumming the impacts on Cli-
mate Change of the three life cycle stages of this process: solvent
production (CCproduction)» Solvent use in the process (CCprocess) and
solvent disposal (CCpjsposal ):

min CCcradle—to—grave = CCI’rocluction + CCProcess + CCDisposal (4)

The impact on Climate Change of the process (CCpyocess) is lin-
early proportional to the energy demand. The energy demand in
the distillation column captures the operating cost of the process.
Thus, economically attractive solvents have a low impact from
the use phase. Therefore, the optimisation of the cradle-to-grave
impact on Climate Change yields solvents with a balanced contri-

bution from all life cycle phases and low operational cost. If
desired, multi-objective optimisation could be employed to explic-
itly optimise cost and impact on Climate Change.

3.2. Results and discussion

In total, the optimisation generates more than 1600 unique sol-
vents, which are evaluated in the 4 design runs in about 5 days
(121 h) on an Intel Xeon CPU E5-1660 v3 @ 3.00 GHz using parallel
computation on 8 cores. From all candidate solvents, 703 solvents
fulfil the property constraints and are suitable for the process.
Therefore, we obtain a ranking of 703 solvents according to their
cradle-to-grave impact on Climate Change as a result (Fig. 6A).

The solvent with the highest reduction in the impact on Climate
Change is 2,3,3,5-tetramethyl-hexane with a cradle-to-grave

impact on Climate Change of about 4.4 kg CO,-eq. kmolg\l,L. In com-
parison to the benchmark n-butyl acetate (Murat Sen et al., 2012),
2,3,3,5-tetramethylhexane reduces the impact on Climate Change
by about 68%. More generally, 291 of the 703 candidate solvents
have a lower impact on Climate Change than the benchmark and
169 solvents outperform the benchmark both in terms of Climate
Change and process energy demand Q .,. COSMO-susCAMPD thus
designs successfully many suitable alternatives. For the top 15 can-
didates, we find very similar solvents: The top 15 solvents are all
alkanes and alkenes, most of them highly branched and therefore
not yet commercially available. The highest-ranking commercially
available bulk chemical is n-octane on rank 8. N-octane reduces
the impact on Climate Change by about 67.5% compared to the
benchmark solvent, which is very close to the impact reduction
of the optimal solvent.

To challenge the use of the cradle-to-grave impact as an objec-
tive function, we compare the cradle-to-grave impact on Climate
Change with the gate-to-gate impact from process energy demand
during solvent use. The impact on Climate Change from process
energy depends linearly on the process energy demand Q ., (black
line in Fig. 6A) and thus represents the result of an economic opti-
misation for minimum process energy demand as typically used in
CAMPD. Intuitively, one might expect that energy demand in the
use phase captures the cradle-to-grave impact on Climate Change
already well. However, in this case study, the cradle-to-grave
impact of 187 candidate solvents deviates by more than 50% from
the impact of process energy (Fig. 6A). The deviation from the
impact caused by the process energy is due to the production
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Fig. 6. (A) Predicted cradle-to-grave impacts on Climate Change (CC) of all solvents
designed versus corresponding process energy demand Q . Each blue circle represents
one candidate solvent. The black line is the impact resulting from the process energy
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demand of the benchmark solvent n-butyl acetate. (B) Cradle-to-grave impact on Climate
Change per kmol GVL versus specific impact from solvent production (cradle-to-gate
system boundary) per kilogram solvent. The red square indicates the solvent with the
lowest cradle-to-gate impact on Climate Change; the yellow diamond indicates the
solvent with the lowest cradle-to-grave impact on Climate Change. (C) Cradle-to-grave
impact on Climate Change versus mole fraction of solvent in the wastewater stream. The
green triangle indicates the solvent with the lowest solvent loss to wastewater; the yellow
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and disposal of the candidate solvents. This deviation highlights
the importance of the cradle-to-grave system boundary. Still, for
this case study, the top 15 solvents with the lowest impact on Cli-
mate Change equal the top 15 solvents with the lowest process
energy demand Q.. For these solvents, the process requires

60.6-62.4 M] kmolg\l,L energy for distillation, corresponding to a
reduction of about 46-48% compared to the benchmark n-butyl
acetate.

Moreover, the importance of the cradle-to-grave system bound-
ary is shown by comparison to the ranking by cradle-to-gate LCA:
A cradle-to-gate LCA based on the specific impacts of solvent pro-
duction yields a very different ranking (Fig. 6B). The solvent with
the lowest cradle-to-gate impact on Climate Change per kilogram

solvent is divinyl ether with about 2.1 kg CO»-eq. kg, e HoW-
ever, divinyl ether has a cradle-to-grave impact on Climate Change

of about 7.3 kg CO,-eq. kmolg\',L ranking only 75th in cradle-to-
grave impact. 2,3,3,5-tetramethyl-hexane, the solvent with lowest
cradle-to-grave impact, ranks only 139th with a higher cradle-to-

gate impact on Climate Change of about 2.5 kg CO,-eq. kgs’ollvent.
Therefore, concentrating only on the specific cradle-to-gate LCA
of the solvent production proves to be a misleading objective.
Specific assessment of molecular properties is not sufficient.
Instead, the amount of solvent used in the process needs to be con-
sidered for solvent selection with an environmental objective. In
particular, the specific cradle-to-gate impacts is quite similar for
all solvents (x-axis of Fig. 6B) in this case study. In contrast, the
cradle-to-grave impact spans multiple orders of magnitude (y-
axis of Fig. 6B) yielding a more selective objective.

The differences in the ranking between cradle-to-gate and
cradle-to-grave LCA can be explained by the neglect of the solvent
use phase: For solvents with a high cradle-to-grave impact, a high
amount of solvent is lost in the wastewater stream (Table 2). A
high solvent loss to wastewater causes a high make-up demand
to run the process in steady-state. Therefore, a high amount of sol-
vent needs to be produced for make-up, causing high absolute
impacts from solvent production regarding the functional unit of
1 kmol GVL. Conversely, a low impact of solvent production is only
achieved with a small make-up demand of solvent, in particular as
the specific cradle-to-gate impacts are within the same order of
magnitude for all candidate solvents.

If the solvent loss is small, the use phase impact due to process
energy dominates the cradle-to-grave LCA. Furthermore, a low sol-
vent loss reduces uncertainty propagation of the ANN predictions.
As a result, the uncertainties of the cradle-to-grave impact
decrease (Table 2). Therefore, accurate LCI of the use phase and
thus, accurate process modelling and precise property data are cru-
cial. As an indicator for the accuracy, we compare the predicted
solubilities of solvent in water from COSMO-RS with experimental
data from the literature. The solubilities of the solvents in water
are crucial for the LCA because they determine the solvent loss
and make-up and consequently, the environmental impact of the
solvent production. For the benchmark n-butyl acetate, solubilities
of 6.7-8.3 g/l at 25 °C have been determined experimentally
(Yalkowsky and He, 2016) compared to 6.1 g/l from our COSMO-
RS predictions. For n-octane, COSMO-RS predicts a solubility at
25 °C of 3 mg/l compared to 0.4-0.9 mg/l experimentally
(Yalkowsky and He, 2016). Considering the broad range of solubil-
ities over multiple orders of magnitude, the experimental mea-
sures are both in good agreement with the COSMO-RS
prediction; thus we conclude that COSMO-RS can be used for prop-
erty prediction to generate accurate LCI for this process, even for
the challenging hydrocarbon-water interactions (Klamt, 2003).

Still, the solvent loss alone is also not sufficient as an objective
for molecular design (Fig. 6C). The solvent with the lowest solvent
loss, 2,4-dimethyl-nonane, ranks only 600th in process energy
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Comparison of the candidate solvents with the lowest cradle-to-grave and the lowest cradle-to-gate impact on Climate Change, as well as the solvent with the lowest solvent loss
and the benchmark solvent. The comparison includes the absolute values for the cradle-to-grave impact on Climate Change CCeradie-to-grave, the ranking in cradle-to-grave and
cradle-to-gate impact on Climate Change (Rank CC cradle-to-grave and Rank CC cradle-to-gate), the ranking in process energy demand Q,., (Rank Q. ), as well as the molar
fraction of solvent in wastewater (Predicted Xy,2q) predicted by COSMO-RS. The absolute values for CCeagie_to_grave also include the 95% confidence interval from the uncertainty

propagation of the ANN.

Solvent Molecular structure CCradle—to—grave/ Rank CC Rank Predicted
kg CO, — eq. kmolgy, cradle-to-grave cradle-to-gate Qreb Xsolv.aq
Lowest Climate Change
(cradle-to-grave) HG, 436 + 0.0017 1 139 1 43 x 1077
H.C, CH, CH,
HC CH,
- Commercially avail. N N N 4.40 £ 0.0015 8 97 9 47 x 1077
Lowest Climate Change
(cradle-to-gate) HeP N0 X, 734 + 1.4 75 1 27 72 x 107"
Lowest solvent loss H;C\/\/YTCH; 31.7 + 0.00012 524 281 600 2.8 x 1078
H: H:
Benchmark
(n-butyl acetate) H«C\n/o\/\/c“« 13.5 £ 3.1 292 247 198 94 x 107*

o

demand Q. and 524th in cradle-to-grave impact on Climate
Change. The advantageous low solvent loss does not guarantee a
low cradle-to-grave impact on CC, as low solvent loss and low
energy demand for separation do not correlate. The high energy
demand in distillation outweighs the favourable low solvent loss
and make-up. Therefore, top solvents balance solvent loss as well
as specific production impact and process energy demand. To
include all these relevant factors, the cradle-to-grave LCA is
required as objective function.

Besides the impact on Climate Change, we evaluated the other
16 ReCiPe midpoint impact categories (Goedkoop et al., 2008) as
well for every candidate solvent in COSMO-susCAMPD. Generally,
solvents ranked well in the impact on Climate Change and process
energy demand show also a balanced performance in most of the
other impact categories. E.g., the top solvent in cradle-to-grave
impact on Climate Change is also among the top 10 solvents in
15 of the other 16 impact categories. As for the impact on Climate
Change, the low solvent loss in the process combined with low
energy demand in separation yields a low cradle-to-grave LCA
impact.

For this case study, only the impact category Ozone Depletion
(OD) differs from the trend of all other impact categories (Fig. 7).
For Ozone Depletion, we find a strong trade-off between the
cradle-to-grave impact on Ozone Depletion and the process energy
demand for most solvents. As a result, the solvent ranking differs
substantially for Ozone Depletion. E.g., 5 of the top 10 solvents in
Ozone Depletion occupy ranks 400 and higher in Climate Change
or ranks 500 and higher in process energy demand. The change
in ranking for Ozone Depletion is due to the fact that the impacts
due to solvent production and solvent loss dominate the impact
on Ozone Depletion. This outcome is reasonable since process
energy is supplied as heat from natural gas combustion with no
substantial impact on Ozone Depletion. Thus, the presented
method also captures the variable weighting of and trade-offs
between the life cycles stages depending on the impact category
considered.

4. Conclusion

In this work, we present a framework for the design of solvents
and processes with an environmental objective: COSMO-
susCAMPD. The COSMO-susCAMPD framework extends state-of-
the-art methods for Computer-Aided Molecular and Process Design
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Fig. 7. Predicted cradle-to-grave impacts on Ozone Depletion (OD) of all solvents
designed depending on corresponding process energy demand Q,.;,. Each blue circle
represents one candidate solvent. The black line is the impact resulting from the
process energy demand; the red lines stand for the impact on Ozone Depletion and
process energy demand of the benchmark solvent n-butyl acetate.

(CAMPD) by integrating predictive Life Cycle Assessment (LCA)
with a cradle-to-grave system boundary. Cradle-to-grave LCA is
achieved by the combination of (1) an Artificial Neural Network
(ANN) predicting cradle-to-gate impacts with (2) process optimisa-
tion using pinch-based process models providing life cycle inven-
tory for solvent use and disposal. Both the ANN and the process
models use molecular and thermodynamic properties calculated
from the predictive thermodynamic model COSMO-RS. Therefore,
the assessment of environmental impact and process performance
is based on one consistent set of descriptors. For simultaneous
molecular and process design, the predictive LCA and the process
optimisation are combined with the genetic algorithm LEA3D,
which optimises 3D-molecular structures based on the results
from LCA and process optimisation.

As an application for COSMO-susCAMPD, we investigate the
purification of the bio-based platform chemical y-valerolactone
from aqueous solution by hybrid extraction-distillation. We opti-
mise the process for minimum environmental impact by exploiting
the degrees of freedom from molecular and process design. As a
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result, we identify promising candidate solvents from a vast design
space outperforming the literature benchmark n-butyl acetate by
reducing the impact on Climate Change by about 68%. The candi-
date solvents identified exhibit both a high process performance,
i.e. a low process energy demand, as well as a low cradle-to-
grave environmental impact in various ReCiPe midpoint impact
categories.

The results show that a cradle-to-grave assessment is necessary
for the design of environmentally beneficial solvents. Simplified
objectives, such as cradle-to-gate LCA or economic evaluation
alone, lead to suboptimal solutions. Only the cradle-to-grave LCA
balances conflicting molecular properties for an optimum result.

The COSMO-susCAMPD framework now provides a method for
CAMPD based on process evaluation and environmental assess-
ment using LCA. The results of COSMO-susCAMPD serve as an
input for further validation by refined process simulations, life
cycle assessment and experiments. In the future, the method can
be extended by further criteria, e.g. by inertness of the solvents
or environmental assessment of acute exposure and handling, such
as the evaluation of Environmental, Health and Safety scores (EHS-
criteria). The process modelling can be extended towards processes
with other unit operations or product design considering a use
phase different from a chemical process. The LCA could also be
refined to include other emissions, such as fugitive emissions of
the process (Smith et al., 2017). Further work is required to extend
the LCA data for training the ANN. Currently, training data for the
ANN is rare, leading to limited accuracy of the ANN predictions. An
improvement in the prediction quality of the ANN is expected if
more consistent LCA data on solvents is available. Importantly,
any additional training data needs to be obtained from process
data by consistent allocation and with consistent background data.
However, for the given case study in this work, the prediction of
accurate process data outweighs the influence of inaccuracies of
the ANN.

In conclusion, the presented framework COSMO-susCAMPD
extends the environmental assessment of state-of-the-art molecu-
lar design by predictive cradle-to-grave life cycle assessment to
enable the computer-aided design of sustainable solvents and
processes.
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