000904186 001__ 904186
000904186 005__ 20240712112914.0
000904186 0247_ $$2doi$$a10.1016/j.compchemeng.2021.107438
000904186 0247_ $$2ISSN$$a0098-1354
000904186 0247_ $$2ISSN$$a1873-4375
000904186 0247_ $$2Handle$$a2128/30431
000904186 0247_ $$2WOS$$aWOS:000684566700008
000904186 037__ $$aFZJ-2021-05756
000904186 082__ $$a660
000904186 1001_ $$0P:(DE-HGF)0$$aGertig, Christoph$$b0
000904186 245__ $$aCAT-COSMO-CAMPD: Integrated in silico design of catalysts and processes based on quantum chemistry
000904186 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000904186 3367_ $$2DRIVER$$aarticle
000904186 3367_ $$2DataCite$$aOutput Types/Journal article
000904186 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642777157_11563
000904186 3367_ $$2BibTeX$$aARTICLE
000904186 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904186 3367_ $$00$$2EndNote$$aJournal Article
000904186 520__ $$aCatalysts are of paramount importance as most chemical processes would be uneconomical without suitable catalysts. Consequently, the identification of appropriate catalysts is a key step in chemical process design. However, the number of potential catalysts is usually vast. To suggest promising candidates for experimental testing, in silico catalyst design methods are highly desirable. Still, such computational methods are in their infancy. Moreover, simple performance indicators are commonly employed as design objective instead of evaluating the actual process performance enabled by considered catalysts. Here, we present the CAT-COSMO-CAMPD method for integrated in silico design of homogeneous molecular catalysts and processes. CAT-COSMO-CAMPD integrates design of molecular catalysts with process optimization, enabling a process-based evaluation of every designed candidate catalyst. Reaction kinetics of catalytic reactions are predicted by advanced quantum chemical methods. We demonstrate for a catalytic carbamate-cleavage process that CAT-COSMO-CAMPD successfully identifies catalyst molecules maximizing the predicted process performance.
000904186 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000904186 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904186 7001_ $$0P:(DE-HGF)0$$aFleitmann, Lorenz$$b1
000904186 7001_ $$0P:(DE-HGF)0$$aHemprich, Carl$$b2
000904186 7001_ $$0P:(DE-HGF)0$$aHense, Janik$$b3
000904186 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b4$$eCorresponding author$$ufzj
000904186 7001_ $$0P:(DE-HGF)0$$aLeonhard, Kai$$b5
000904186 773__ $$0PERI:(DE-600)1499971-7$$a10.1016/j.compchemeng.2021.107438$$gVol. 153, p. 107438 -$$p107438 -$$tComputers & chemical engineering$$v153$$x0098-1354$$y2021
000904186 8564_ $$uhttps://juser.fz-juelich.de/record/904186/files/1-s2.0-S0098135421002167-main.pdf$$yOpenAccess
000904186 909CO $$ooai:juser.fz-juelich.de:904186$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904186 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000904186 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000904186 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a ETH Zurich$$b1
000904186 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000904186 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000904186 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b4$$kRWTH
000904186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b4$$kFZJ
000904186 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zurich$$b4
000904186 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
000904186 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000904186 9141_ $$y2021
000904186 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000904186 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000904186 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-29
000904186 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000904186 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904186 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT CHEM ENG : 2019$$d2021-01-29
000904186 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000904186 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000904186 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000904186 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904186 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000904186 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000904186 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000904186 920__ $$lyes
000904186 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000904186 9801_ $$aFullTexts
000904186 980__ $$ajournal
000904186 980__ $$aVDB
000904186 980__ $$aUNRESTRICTED
000904186 980__ $$aI:(DE-Juel1)IEK-10-20170217
000904186 981__ $$aI:(DE-Juel1)ICE-1-20170217