001     904186
005     20240712112914.0
024 7 _ |a 10.1016/j.compchemeng.2021.107438
|2 doi
024 7 _ |a 0098-1354
|2 ISSN
024 7 _ |a 1873-4375
|2 ISSN
024 7 _ |a 2128/30431
|2 Handle
024 7 _ |a WOS:000684566700008
|2 WOS
037 _ _ |a FZJ-2021-05756
082 _ _ |a 660
100 1 _ |a Gertig, Christoph
|0 P:(DE-HGF)0
|b 0
245 _ _ |a CAT-COSMO-CAMPD: Integrated in silico design of catalysts and processes based on quantum chemistry
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642777157_11563
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Catalysts are of paramount importance as most chemical processes would be uneconomical without suitable catalysts. Consequently, the identification of appropriate catalysts is a key step in chemical process design. However, the number of potential catalysts is usually vast. To suggest promising candidates for experimental testing, in silico catalyst design methods are highly desirable. Still, such computational methods are in their infancy. Moreover, simple performance indicators are commonly employed as design objective instead of evaluating the actual process performance enabled by considered catalysts. Here, we present the CAT-COSMO-CAMPD method for integrated in silico design of homogeneous molecular catalysts and processes. CAT-COSMO-CAMPD integrates design of molecular catalysts with process optimization, enabling a process-based evaluation of every designed candidate catalyst. Reaction kinetics of catalytic reactions are predicted by advanced quantum chemical methods. We demonstrate for a catalytic carbamate-cleavage process that CAT-COSMO-CAMPD successfully identifies catalyst molecules maximizing the predicted process performance.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fleitmann, Lorenz
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hemprich, Carl
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hense, Janik
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 4
|e Corresponding author
|u fzj
700 1 _ |a Leonhard, Kai
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.compchemeng.2021.107438
|g Vol. 153, p. 107438 -
|0 PERI:(DE-600)1499971-7
|p 107438 -
|t Computers & chemical engineering
|v 153
|y 2021
|x 0098-1354
856 4 _ |u https://juser.fz-juelich.de/record/904186/files/1-s2.0-S0098135421002167-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904186
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a ETH Zurich
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)172023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172023
910 1 _ |a ETH Zurich
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)172023
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT CHEM ENG : 2019
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21