Home > Publications database > CAT-COSMO-CAMPD: Integrated in silico design of catalysts and processes based on quantum chemistry > print |
001 | 904186 | ||
005 | 20240712112914.0 | ||
024 | 7 | _ | |a 10.1016/j.compchemeng.2021.107438 |2 doi |
024 | 7 | _ | |a 0098-1354 |2 ISSN |
024 | 7 | _ | |a 1873-4375 |2 ISSN |
024 | 7 | _ | |a 2128/30431 |2 Handle |
024 | 7 | _ | |a WOS:000684566700008 |2 WOS |
037 | _ | _ | |a FZJ-2021-05756 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Gertig, Christoph |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a CAT-COSMO-CAMPD: Integrated in silico design of catalysts and processes based on quantum chemistry |
260 | _ | _ | |a Amsterdam [u.a.] |c 2021 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1642777157_11563 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Catalysts are of paramount importance as most chemical processes would be uneconomical without suitable catalysts. Consequently, the identification of appropriate catalysts is a key step in chemical process design. However, the number of potential catalysts is usually vast. To suggest promising candidates for experimental testing, in silico catalyst design methods are highly desirable. Still, such computational methods are in their infancy. Moreover, simple performance indicators are commonly employed as design objective instead of evaluating the actual process performance enabled by considered catalysts. Here, we present the CAT-COSMO-CAMPD method for integrated in silico design of homogeneous molecular catalysts and processes. CAT-COSMO-CAMPD integrates design of molecular catalysts with process optimization, enabling a process-based evaluation of every designed candidate catalyst. Reaction kinetics of catalytic reactions are predicted by advanced quantum chemical methods. We demonstrate for a catalytic carbamate-cleavage process that CAT-COSMO-CAMPD successfully identifies catalyst molecules maximizing the predicted process performance. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Fleitmann, Lorenz |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Hemprich, Carl |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Hense, Janik |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Bardow, André |0 P:(DE-Juel1)172023 |b 4 |e Corresponding author |u fzj |
700 | 1 | _ | |a Leonhard, Kai |0 P:(DE-HGF)0 |b 5 |
773 | _ | _ | |a 10.1016/j.compchemeng.2021.107438 |g Vol. 153, p. 107438 - |0 PERI:(DE-600)1499971-7 |p 107438 - |t Computers & chemical engineering |v 153 |y 2021 |x 0098-1354 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/904186/files/1-s2.0-S0098135421002167-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:904186 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a ETH Zurich |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 4 |6 P:(DE-Juel1)172023 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)172023 |
910 | 1 | _ | |a ETH Zurich |0 I:(DE-HGF)0 |b 4 |6 P:(DE-Juel1)172023 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 5 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-29 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMPUT CHEM ENG : 2019 |d 2021-01-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-29 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-29 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|