000904187 001__ 904187
000904187 005__ 20240712112914.0
000904187 0247_ $$2doi$$a10.3389/fenrg.2021.719658
000904187 0247_ $$2Handle$$a2128/30394
000904187 0247_ $$2altmetric$$aaltmetric:111550200
000904187 0247_ $$2WOS$$aWOS:000685032500001
000904187 037__ $$aFZJ-2021-05757
000904187 082__ $$a333.7
000904187 1001_ $$0P:(DE-HGF)0$$aKämper, Andreas$$b0
000904187 245__ $$aAutoMoG 3D: Automated Data-Driven Model Generation of Multi-Energy Systems Using Hinging Hyperplanes
000904187 260__ $$aLausanne$$bFrontiers Media$$c2021
000904187 3367_ $$2DRIVER$$aarticle
000904187 3367_ $$2DataCite$$aOutput Types/Journal article
000904187 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642762113_21910
000904187 3367_ $$2BibTeX$$aARTICLE
000904187 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904187 3367_ $$00$$2EndNote$$aJournal Article
000904187 520__ $$aThe optimal operation of multi-energy systems requires optimization models that are accurate and computationally efficient. In practice, models are mostly generated manually. However, manual model generation is time-consuming, and model quality depends on the expertise of the modeler. Thus, reliable and automated model generation is highly desirable. Automated data-driven model generation seems promising due to the increasing availability of measurement data from cheap sensors and data storage. Here, we propose the method AutoMoG 3D (Automated Model Generation) to decrease the effort for data-driven generation of computationally efficient models while retaining high model quality. AutoMoG 3D automatically yields Mixed-Integer Linear Programming models of multi-energy systems enabling efficient operational optimization to global optimality using established solvers. For each component, AutoMoG 3D performs a piecewise-affine regression using hinging-hyperplane trees. Thereby, components can be modeled with an arbitrary number of independent variables. AutoMoG 3D iteratively increases the number of affine regions. Thereby, AutoMoG 3D balances the errors caused by each component in the overall model of the multi-energy system. AutoMoG 3D is applied to model a real-world pump system. Here, AutoMoG 3D drastically decreases the effort for data-driven model generation and provides an accurate and computationally efficient optimization model.
000904187 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000904187 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904187 7001_ $$0P:(DE-HGF)0$$aHoltwerth, Alexander$$b1
000904187 7001_ $$0P:(DE-HGF)0$$aLeenders, Ludger$$b2
000904187 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b3$$eCorresponding author$$ufzj
000904187 773__ $$0PERI:(DE-600)2733788-1$$a10.3389/fenrg.2021.719658$$gVol. 9, p. 719658$$p719658$$tFrontiers in energy research$$v9$$x2296-598X$$y2021
000904187 8564_ $$uhttps://juser.fz-juelich.de/record/904187/files/fenrg-09-719658.pdf$$yOpenAccess
000904187 909CO $$ooai:juser.fz-juelich.de:904187$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904187 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000904187 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000904187 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000904187 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a ETH Zurich$$b2
000904187 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b3$$kRWTH
000904187 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b3$$kFZJ
000904187 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zurich$$b3
000904187 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000904187 9141_ $$y2021
000904187 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000904187 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000904187 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-29
000904187 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904187 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT ENERGY RES : 2019$$d2021-01-29
000904187 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29
000904187 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29
000904187 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000904187 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000904187 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000904187 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000904187 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904187 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-29
000904187 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000904187 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000904187 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000904187 920__ $$lyes
000904187 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000904187 9801_ $$aFullTexts
000904187 980__ $$ajournal
000904187 980__ $$aVDB
000904187 980__ $$aUNRESTRICTED
000904187 980__ $$aI:(DE-Juel1)IEK-10-20170217
000904187 981__ $$aI:(DE-Juel1)ICE-1-20170217