Hauptseite > Publikationsdatenbank > AutoMoG 3D: Automated Data-Driven Model Generation of Multi-Energy Systems Using Hinging Hyperplanes > print |
001 | 904187 | ||
005 | 20240712112914.0 | ||
024 | 7 | _ | |a 10.3389/fenrg.2021.719658 |2 doi |
024 | 7 | _ | |a 2128/30394 |2 Handle |
024 | 7 | _ | |a altmetric:111550200 |2 altmetric |
024 | 7 | _ | |a WOS:000685032500001 |2 WOS |
037 | _ | _ | |a FZJ-2021-05757 |
082 | _ | _ | |a 333.7 |
100 | 1 | _ | |a Kämper, Andreas |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a AutoMoG 3D: Automated Data-Driven Model Generation of Multi-Energy Systems Using Hinging Hyperplanes |
260 | _ | _ | |a Lausanne |c 2021 |b Frontiers Media |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1642762113_21910 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The optimal operation of multi-energy systems requires optimization models that are accurate and computationally efficient. In practice, models are mostly generated manually. However, manual model generation is time-consuming, and model quality depends on the expertise of the modeler. Thus, reliable and automated model generation is highly desirable. Automated data-driven model generation seems promising due to the increasing availability of measurement data from cheap sensors and data storage. Here, we propose the method AutoMoG 3D (Automated Model Generation) to decrease the effort for data-driven generation of computationally efficient models while retaining high model quality. AutoMoG 3D automatically yields Mixed-Integer Linear Programming models of multi-energy systems enabling efficient operational optimization to global optimality using established solvers. For each component, AutoMoG 3D performs a piecewise-affine regression using hinging-hyperplane trees. Thereby, components can be modeled with an arbitrary number of independent variables. AutoMoG 3D iteratively increases the number of affine regions. Thereby, AutoMoG 3D balances the errors caused by each component in the overall model of the multi-energy system. AutoMoG 3D is applied to model a real-world pump system. Here, AutoMoG 3D drastically decreases the effort for data-driven model generation and provides an accurate and computationally efficient optimization model. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Holtwerth, Alexander |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Leenders, Ludger |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Bardow, André |0 P:(DE-Juel1)172023 |b 3 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.3389/fenrg.2021.719658 |g Vol. 9, p. 719658 |0 PERI:(DE-600)2733788-1 |p 719658 |t Frontiers in energy research |v 9 |y 2021 |x 2296-598X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/904187/files/fenrg-09-719658.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:904187 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a ETH Zurich |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-Juel1)172023 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)172023 |
910 | 1 | _ | |a ETH Zurich |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)172023 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FRONT ENERGY RES : 2019 |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-01-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-29 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-01-29 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-29 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|