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a b s t r a c t 

Large industrial sites commonly contain multiple production and utility systems. In practice, integrated 

optimization is often not possible because the necessary complete information cannot be exchanged be- 

tween the systems. Often, industrial sites optimize the operation of production and utility systems se- 

quentially without any feedback, which leads to suboptimal operation. 

In this paper, we propose a method to coordinate between production and utility systems in a multi- 

leader multi-follower Stackelberg game. The proposed method does not require complete information 

exchange. The only information exchanged in one feedback loop is the energy demand and demand- 

dependent energy cost. 

In two case studies, the method reduces the total production cost by 7.6% and 3.4% compared to the 

common sequential optimization. These cost savings correspond to 84% and 88% of the potential cost 

savings by an integrated optimization. In summary, the proposed method reduces cost significantly, while 

only incomplete information is exchanged between production and utility systems. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Large industrial sites often consist of multiple production sys- 

ems. Energy for the production systems is normally supplied by 

n-site utility systems. Most often, each system on the indus- 

rial site is operated by a different com pany or business unit. As 

 result, the operation is optimized for each system individually 

 Engell et al. 2015 ). The individual optimizations are commonly 

erformed sequentially: First, each production system schedules 

ts production plan which also defines its energy demand. Subse- 

uently, the utility systems individually optimize their operation to 

ulfill the energy demand. 

In the last decades, major advances have been achieved in 

cheduling of either production systems or utility systems (see the 

eview by Castro et al. (2018) ). For production systems, research 

as also tackled different energy-consumption-related issues, e.g., 

eat integration ( Pinto et al., 2003; Seid and Majozi, 2015 ), time- 
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ensitive electricity prices ( Hadera et al., 2015 ). For utility sys- 

ems, new challenges arise from increasing electricity production 

rom renewable energy sources, e.g., design with time-dependent 

rid emissions ( Baumgärtner et al., 2019 ) or operation with time- 

ependent electricity prices ( Kumbartzky et al., 2017; Mitra et al., 

013 ). However, common approaches optimize production and util- 

ty systems still individually and sequentially. Consequently, poten- 

ial synergetic effects are missed leading to suboptimal operation 

nd cost in general. 

The minimal cost can be achieved by the integrated optimiza- 

ion of all production and utility systems. Agha et al. (2010) inte- 

rate scheduling for one production and utility system. Zulkafli and 

opanos (2016) incorporated unit performance degradation and 

eenders et al. (2020) the provision of control reserve in balancing 

arkets. The present authors extended the integrated scheduling 

o the integrated design of both systems ( Leenders et al., 2019b ). 

However, integrated optimization is often not desired or even 

rohibited if systems are operated by different companies since in- 

egrated optimization requires that all systems share all informa- 

ion on their optimization problems. In practice, the systems often 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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annot exchange all information. In game theory, this situation is 

alled incomplete information. Still, the exchange of incomplete in- 

ormation can be beneficial. The challenge is to identify the rele- 

ant information such that the resulting schedule is almost as good 

s solving an integrated optimization. 

Professor Engell, to whom this special issue is dedicated, has 

ecognized this important practical problem and proposed first so- 

ution approaches that use incomplete information to coordinate 

etween systems in an industrial site: Maxeiner et al. (2017) co- 

rdinate between interconnected systems and use resource-prices 

s incomplete information exchanged between the systems. In the 

ethod, shared resources are allocated by a central site man- 

ger. The problem is solved iteratively by price-based coordina- 

ion. Wenzel et al. (2020) coordinate between different produc- 

ion systems. They decompose the integrated optimization problem 

nto optimization problems for each production system. The solu- 

ions of each production systems optimization problem are approx- 

mated and the systems are coordinated by a hierarchical market- 

ike coordination algorithm. 

Recently, Allman and Zhang (2020) also addressed the coopera- 

ive demand response of an industrial process and its customers. 

he industrial process can benefit from time-varying electricity 

rices by shifting its production. For this purpose, the industrial 

rocess coordinates with the customers to shift their product de- 

and. The algorithm by Allman and Zhang (2020) is based on the 

lternate direction method of multipliers. As incomplete informa- 

ion, only product demand and price information are exchanged 

etween the industrial process and its customers. 

The above reviewed coordination methods decompose the inte- 

rated optimization into individual optimization problems for each 

ystem. However, in practice, often a hierarchical structure exists 

etween the systems. For example, the production systems an- 

ounce their energy demands first and, subsequently, the utility 

ystems optimize their operation to fulfill the announced energy 

emands. If both systems have different objectives, this hierarchi- 

al structure cannot be described by an integrated optimization 

roblem. 

However, hierarchical structures can be described by game the- 

ry. In particular, Stackelberg games model the hierarchical struc- 

ure between different parties ( von Stackelberg, 2011 ). In Stackel- 

erg games, the parties are either leaders or followers. Leaders de- 

ide first and followers optimize based on the leader’s decisions. 

If the leader has complete information on the follower, the 

tackelberg game can be described and solved as bilevel problem 

 Sinha et al., 2018 ). Bilevel problems are challenging to solve and 

re proven to be NP-hard ( Jeroslow, 1985; Bard, 1991 ). However, 

romising solution algorithms have been developed to solve bilevel 

roblems ( Djelassi et al., 2019; Mitsos, 2010 ). 

If the leader has only incomplete information on the follower, 

ommonly, tailor-made methods are applied. In the following, 

tackelberg games are briefly reviewed for both cases where the 

eader has either complete or incomplete information. Wang et al. 

2016) solve a Stackelberg game between the product-family ar- 

hitecture (leader) and the supply-chain configuration (followers). 

he single-leader multi-follower Stackelberg game is solved itera- 

ively by exchanging the solutions of each follower with the leader 

nd vice versa. Because only the solution is exchanged, the op- 

imization uses incomplete information. Yue and You (2017) pro- 

ose a solution algorithm for the supply-chain optimization with 

omplete information in a single-leader single-follower Stackelberg 

ame. The algorithm solves the resulting mixed-integer bilevel 

roblem. 

Stackelberg games are also widely applied in energy applica- 

ions. For a smart grid, Yu and Hong (2016) iteratively solve a 

ingle-leader multi-follower Stackelberg game. In their Stackelberg 

ame, an utility company is the leader and multiple customers are 
2 
he followers. The leader minimizes the variations in the generated 

lectricity. The followers minimize the payments for consumed 

lectricity as well as maximize the satisfaction by consumed elec- 

ricity. An iterative solution algorithm is applied based on in- 

omplete information exchanged: electricity prices and power de- 

ands. Motalleb et al. (2018) model a single-leader multi-follower 

tackelberg game for a real-time demand response market with an 

xchange of incomplete information. In their Stackelberg game, the 

tility company (leader) regulates powers and prices by announc- 

ng the electricity price and trading power quantity. Demand re- 

ponse aggregators (followers) announce their bids for buying or 

elling electricity. For a smart grid, Maharjan et al. (2013) solve a 

ulti-leader multi-follower Stackelberg game iteratively. The solu- 

ion approach is based on incomplete information exchange where 

he utility companies (leader) announce the energy prices and end- 

sers (followers) respond with their energy demand. 

Yokoyama et al. (2019) model a Stackelberg game between a 

entral power-utility system as the leader and a distributed co- 

eneration system as the follower. The Stackelberg game is mod- 

led as a bilevel mixed-integer linear program assuming complete 

nformation exchange. The bilevel problem is solved based on the 

arush–Kuhn–Tucker reformulation. Ramos et al. (2018) proposed 

 single-leader multi-follower and a multi-leader single-follower 

tackelberg game for the utility-network design of eco-industrial 

arks. The authority of the eco-industrial park is the single leader 

 follower and the enterprises are the multi follower / leader. In the 

co-industrial park, the enterprises are continuously operating pro- 

uction plants. The bilevel problem is solved for the single-leader 

ulti-follower Stackelberg game by replacing the followers’ prob- 

ems by the Karush–Kuhn–Tucker reformulation. The bilevel prob- 

em for the multi-leader single-follower Stackelberg game is solved 

y a previously proposed method by the authors ( Ramos et al., 

016 ). 

The reviewed literature shows different methods to solve Stack- 

lberg games for both complete or incomplete information ex- 

hange. However, the reviewed literature does not tackle Stackel- 

erg games to schedule production and utility systems with in- 

omplete information exchange. In an earlier publication, the au- 

hors proposed a method to coordinate a single batch production 

nd a single utility system in a single-leader single-follower Stack- 

lberg game ( Leenders et al., 2019a ). The method considers incom- 

lete information exchange based on demand-dependent energy 

ost. This paper extends the method to multiple production and 

tility systems in a multi-leader multi-follower Stackelberg game. 

he resulting challenge is that we not only have to coordinate 

etween an upper (production systems) and a lower level (util- 

ty systems), but also within each level. Thus, we need to coor- 

inate multiple systems within each level. As a result, three coor- 

ination methods need to be devised: on the upper level, on the 

ower level, and between the levels. Thus, we propose novel coor- 

ination methods for the upper level (production systems) and the 

ower level (utility systems). The coordination methods need to re- 

ect the available and exchangeable information. Thereby, we can 

xtend the method from Leenders et al. (2019a) to multiple pro- 

uction and utility systems. 

The concept was already proposed in a conference paper 

 Leenders et al., 2019c ). Due to the page limitation, the confer- 

nce paper presents only parts of the method. This paper refines 

he method and includes more detail and an additional case study 

s provided. In particular, we present a method for reallocation of 

he demand-dependent energy cost. Furthermore, in this paper, we 

resent the full methods for: the coordination among the produc- 

ion systems and among the utility systems, as well as the opti- 

ization problem of the energy price minimization. The remain- 

er of the paper is organized as follows. In Section 2 , the proposed

ethod is presented in detail. In Section 3 , the method is applied 
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Fig. 1. Problem setup for coordination between production and utility systems il- 

lustrated for two production systems and utility systems. The production systems 

announce their energy demand. The energy demand is allocated to the utility sys- 

tems. The utility systems announce the energy cost for the supply of the energy 

demand. The three problems to be solved are: (a) How to coordinate between util- 

ity systems and production systems? ( Section 2.1 ) (b) How to coordinate the utility 

systems? ( Section 2.2 ) (c) How to coordinate the production systems? ( Section 2.3 ) 
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o two case studies and the result are compared to both integrated 

nd sequential optimization. Finally, in Section 4 , conclusions are 

iven. 

. Coordination of multiple production and utility systems 

For the proposed method, we consider the following setup of 

he Stackelberg game ( Fig. 1 ): Multiple production systems are op- 

rated on an industrial site. The production systems are supplied 

ith energy by multiple utility systems. The energy supply is or- 

anized in 4 steps: 

1. The production systems (leader) announce their energy de- 

mands based on fixed energy prices to the utility systems (fol- 

lower), e.g., hourly energy demands for one day. 

2. The utility systems (follower) respond by announcing the as- 

sociated hourly energy cost. The energy cost depends on the 

operation of the utility systems to supply the energy demand. 

3. The production systems (leader) reschedule their operation 

with the knowledge of their energy cost, also leading to a 

rescheduled energy demand. 

4. The utility systems (follower) adapt their operation to the 

rescheduled energy demand and announce the associated 

hourly energy cost. 

Ideally, the production systems would know all details of the 

ptimization problems of the utility systems. In this case, total 

roduction cost could be minimized since the production systems 

ould directly account for the optimization problems of the utility 

ystems in their decision-making process. The production systems 

ould have complete information on the utility systems and could 

olve the resulting bilevel optimization problem. However, as dis- 

ussed in the introduction, the exchange of complete information 

s often not possible. Thus, here, we propose a method to coor- 

inate multiple production and utility systems in a multi-leader 

ulti-follower Stackelberg game using only incomplete informa- 

ion. Still, with only incomplete information available, our method 

educes cost significantly. 

In our method, all systems optimize themselves. Thus, each pro- 

uction system and each utility system schedule itself. The systems 

re coordinated based on incomplete information corresponding 

o (1) energy demands of the production systems and (2) energy 

ost announced by the utility systems. Thus, information on the 

nnounced energy demands and on energy cost is shared in the 

ndustrial park. The coordination can be performed by an author- 
3 
ty or any participating production or utility system. For an even 

igher degree of confidentiality, an aggregator can anonymize the 

ata and can pass it to a coordinator, as proposed by Wenzel et al.

2020) . 

The proposed method for coordination has to solve 3 problems 

 Fig. 1 ): 

• Problem a): Coordination between utility systems and produc- 

tion systems ( Section 2.1 ) 

- How to exchange incomplete information for potential 

demand-side management? 
• Problem b): Coordination of the utility systems ( Section 2.2 ) 

- How to identify the amount of energy supplied by each util- 

ity system? 

- How to condense individual demand-dependent energy cost 

to overall demand-dependent energy cost? 
• Problem c): Coordination of the production systems 

( Section 2.3 ) 

- How to allocate the demand-dependent energy cost to the 

individual production systems? 

- How changes in the energy demand of the individual pro- 

duction systems affect the overall demand-dependent en- 

ergy cost? 

.1. Coordination between production systems and utility systems 

The operation of production and utility systems needs to be co- 

rdinated because each system’s operation is affected by the oper- 

tion of the other systems. The production systems schedule their 

roduction for minimal cost. Their cost result from both running 

he production processes and from the energy cost. In industry, en- 

rgy cost is often not simply proportional to the energy demand, 

ecause the energy costs depend on the operation of the utility 

ystems. 

The proposed method coordinates among all systems, while 

nly incomplete information is exchanged. For a single production 

nd a single utility system, the authors previously proposed a coor- 

ination method ( Leenders et al., 2019a ). The incomplete informa- 

ion shared was demand-dependent energy cost. These demand- 

ependent energy cost are also used in this work. 

The coordination of multiple production and utility systems is 

erformed in 4 steps (left-hand side of Fig. 2 ): 

• Step ➀: The production systems schedule their production. For 

the cost of energy, constant prices are assumed. Step ➀ deter- 

mines the energy demand as input for Step ➁. 
• Step ➁: The utility systems schedule their operation (details 

in Section 2.2 ). In Step ➁, the utility systems coordinate how 

much energy is supplied by each utility system. The coordina- 

tion aims for a minimal energy price. Furthermore, each utility 

system calculates its demand-dependent energy cost based on 

Leenders et al. (2019a) . Afterwards, the demand-dependent en- 

ergy costs of all utility systems are aggregated. This aggregated 

demand-dependent energy cost is the input for Step ➂. 
• Step ➂: The production systems re-schedule their production 

(details in Section 2.3 ). The energy cost of each production 

system is identified. For this purpose, aggregated demand- 

dependent energy costs from Step ➁ and the energy demands 

from the re-scheduling are used as incomplete information. 

The rescheduled energy demand of the production systems is 

passed to the utility systems as the input for Step ➃. 
• Step ➃: The utility systems reschedule their operation to iden- 

tify the final energy cost (details in Section 2.2 ). As in Step ➁, 

the utility systems coordinate how much energy is supplied by 
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allocate energy cost 
propor�onal to energy 
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b1 b3

re-allocate energy cost
by new energy demand
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Sec 2.2

Sec 2.3

Fig. 2. Method to solve the multi-leader multi-follower Stackelberg game by coordination between multiple production and utility systems. Two inner algorithms are 

employed to schedule utility systems (Step ➁+ ➃) and production systems (Step ➂). 
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L

each utility system. The result of Step ➃ is the energy cost to 

be paid by the production systems. 

The steps ➁, ➂, and ➃ use inner algorithms to coordinate 

he systems. The inner algorithms are explained in the following 

ections 2.2 and 2.3 . 

A crucial element of the method is the demand-dependent en- 

rgy cost that is determined by each utility system. Commonly, en- 

rgy cost increase/decrease nonlinearly when the energy demand 

s changed. The underlying idea of the demand-dependent energy 

ost is to capture the typically nonlinear increase/decrease of en- 

rgy cost by piecewise-linear functions and without computing the 

ull cost curve. As an approximation, 4 price ranges are defined 

 Fig. 3 ): 1. small increase, 2. large increase, 3. small decrease, 4. 

arge decrease. A small increase/decrease is defined by the operat- 

ng range of the current set of operating units. The energy cost of a 

arge increase/decrease is defined by adding 1 additional operating 

nit or switching off 1 operating unit, respectively. 

Following this definition, the demand-dependent energy cost is 

btained from the energy cost for the current energy demand and 

 additional energy demands ( Fig. 3 ). The 4 additional energy de- 

ands are located where additional units might be switched on 

r operating units might be switched off. The demand-dependent 

nergy cost is then obtained by interpolating the energy cost be- 

ween these 4 energy demands. Beyond these energy demands, we 

xtrapolate the energy cost. The demand-dependent energy cost 

as been described in more detail in Leenders et al. (2019a) . Here, 

ultiple utility systems are considered. 

Therefore, coordination is necessary for the utility systems. The 

oordination is presented in the following section. 

.2. Coordination among utility systems: Step ➁ + ➃

The energy demand of the production systems is fulfilled 

y multiple utility systems. The utility systems compete for the 
4 
mount of energy that each utility system supplies to the produc- 

ion systems. The coordination has to identify how much energy 

s supplied by each utility system. We assume that the coordina- 

ion among the utility systems aims for the minimum energy cost. 

hus, the coordination allocates the energy demand according to 

ts objective of the coordination is to reach the minimal cost of 

nergy supply. 

For each utility system, the cost of energy supply has not one 

xed value but depends on the energy demand. This dependence 

eeds to be captured by the coordination method. For this pur- 

ose, we use the concept of demand-dependent energy cost from 

eenders et al. (2019a) that are a piecewise-linear representation 
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f energy cost as a function of the energy demand. The demand- 

ependent energy cost is specific for every time step, since time- 

ependent parameters can be in the utility systems optimization, 

uch as electricity prices. 

To reach the minimal energy price, the coordination between 

he utility systems is performed in 4 substeps ( Fig. 2 ; a1–a4): 

• Substep a1: The energy demand is allocated to the utility sys- 

tems. In Step ➁, the allocation is proportional to the maximum 

capacity of each utility system. In Step ➃, the allocation is based 

on the amount of energy provided by each utility system, as 

calculated in Step ➁. 
• Substep a2: Each utility system schedules itself to fulfill the 

allocated energy demand from Substep a1. Furthermore, each 

utility system calculates its demand-dependent energy cost. 
• Substep a3: The coordinating system solves the optimization 

problem to minimize the energy price. The optimization prob- 

lem reallocates the energy demand. As a result, the amount of 

energy provided by each utility system is determined. The de- 

tails of the optimization problem are given below. 
• Substep a4: As in Substep a2, each utility system is sched- 

uled, but with the reallocated energy demand from Substep 

a3. Based on the new schedule, each utility system recal- 

culates its demand-dependent energy cost. Subsequently, all 

demand-dependent energy costs are aggregated to one aggre- 

gated demand-dependent energy cost, such that the lowest en- 

ergy cost is reached. This aggregated demand-dependent en- 

ergy cost is a merit-order curve for the energy supply. 

In Step ➁ of the main method, the output of the coordination 

s the aggregated demand-dependent energy cost and the energy 

ost of the current energy demand. In Step ➃, the output of the 

oordination is the energy cost to fulfill the energy demand. 

nergy price minimization in Substep a3 

The coordination between the utility systems allocates how 

uch energy is supplied by each utility system. This allocation of 

he energy demand uses demand-dependent energy cost from Sub- 

tep a2 to represent the energy cost of each utility system. Thus, 

nly incomplete information is exchanged. The objective of the al- 

ocation is to minimize the energy price. 

The energy demand is allocated by an optimization problem 

ith the following structure: 

• Objective: Minimal energy price 
• Subject to: Energy balances and demand-dependent energy cost 

of each utility system 

The optimization problem is performed separately for every en- 

rgy form e, e.g., heat, electricity. In the following, the equations of 

he optimization problem are given. The objective is to minimize 

he energy price c e of energy form e : 

in c e (1) 

he main constraints are the energy balances. In the previous Sub- 

tep a2, each utility system calculated its demand-dependent en- 

rgy cost for the current energy demand. Thus, the current energy 

emand is already fulfilled by the utility systems. Consequently, if 

ne utility system supplies additional energy, the remaining utility 

ystems have to supply less energy by the same amount. Thus, the 

um of differences in provided energy �E i,e by all utility systems 

quals zero: 
 

i 

�E i,e = 0 (2) 

E i,e is the difference of energy provided by utility system i com- 

ared to Substep a2. 
5 
The energy cost of each utility system is considered by its 

emand-dependent energy cost. The demand-dependent energy 

ost is a piecewise-linear function with 4 sections ( Fig. 4 ). For util-

ty system i, the range of each linear section is defined by the dif- 

erence of the energy supply �E i,e ( Fig. 4 ): 

Linear Section 1(large decrease): 

i,e, 1 · (E min 
i,e − E curr 

i,e ) ≤ αi,e, 1 · �E i,e ≤ αi,e, 1 · �E lb1 
i,e ∀ i ∈ I (3) 

inear Section 2 (small decrease): 

i,e, 2 · �E lb1 
i,e ≤ αi,e, 2 · �E i,e ≤ 0 ∀ i ∈ I (4) 

inear Section 3: (small increase) 

 ≤ αi,e, 3 · �E i,e ≤ αi,e, 3 · �E ub1 
i,e ∀ i ∈ I (5) 

inear Section 4 (large increase): 

i,e, 4 · �E ub1 
i,e ≤ αi,e, 4 · �E i,e ≤ αi,e, 4 · (�E max 

i,e − E curr 
i,e ) ∀ i ∈ I 

(6) 

i,e,s identifies the section s in which the new energy demand 

E curr 
i,e 

+ �E i,e ) is located. E curr 
i,e 

is the current energy demand. 

The energy price in each section s is determined by interpola- 

ion between the 4 energy demands used to determine the linear 

ections. The 4 energy demands are defined by adding an addi- 

ional operating unit or switching off an operating unit from the 

et of operated utility units to fulfill the current energy demand 

 Fig. 4 ): 

• (E curr 
i,e 

+ �E lb2 
i,e 

) is the energy demand in Section 1 (large de- 

crease). �E lb2 
i,e 

is the difference in the energy demand, if the 

smallest utility unit operated can be switched off and the sec- 

ond smallest operated utility unit just cannot be switched off. 
• (E curr 

i,e 
+ �E lb1 

i,e 
) is the lowest energy demand in Section 2 (small 

decrease). �E lb1 
i,e 

is the difference in the energy demand, if just 

no utility unit currently operated can be switched off. 
• E curr 

i,e 
is the current energy demand and separates Section 2 

(small decrease) and Section 3 (small increase). 
• (E curr 

i,e 
+ �E ub1 

i,e 
) is the highest energy demand in Section 3 

(small increase). �E ub1 
i,e 

is the difference in the energy demand, 

if the utility units currently operated operate at their maximal 

capacity. 
• (E curr 

i,e 
+ �E ub2 

i,e 
) is the energy demand in Section 4 (large in- 

crease). �E ub2 
i,e 

is the difference in the energy demand, if all 

utility units currently operated and the smallest idle utility unit 

are operated at their maximal capacity. 
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The energy demand cannot be negative. The non-negativity of 

he energy demand is ensured by limiting the decrease in the en- 

rgy demand (−�E i,e ) to the current energy demand E curr 
i,e 

as fol- 

ows: 

i,e, 0 · �E i,e ≤ −αi,e, 0 · E curr 
i,e ∀ i ∈ I (7) 

E i,e ≥ −E curr 
i,e ∀ i ∈ I (8) 

he binary variable αi,e, 0 equals 1, if the energy demand is 0. 

The energy demand can only be located in one section s, thus, 

i,e,s is 1 in only one section: 

4 
 

s =0 

αi,e,s = 1 ∀ i ∈ I (9) 

he objective of the optimization problem is the minimization of 

he overall energy price c e to fulfill the energy demand ( Eq. (2) ).

hus, the energy price of each utility system i needs to be lower 

r equal to the overall energy price c e . 

In the following equations, we calculate the energy 

rice of each utility system i . We rearranged the equations 

o avoid a possible division by an energy demand of 0: 

ection 1 (large decrease): 

 e · (�E i,e + E curr 
i,e ) ≥ αi,e, 1 ·

[
C lb2 

i,e 
− C lb1 

i,e 

�E lb2 
i,e 

− �E lb1 
i,e 

· (�E i,e − �E lb2 
i,e ) + C lb2 

i,e 

]

∀ i ∈ I (10) 

ection 2 (small decrease): 

 e · (�E i,e + E curr 
i,e ) ≥ αi,e, 2 ·

[
C lb1 

i,e 
− C curr 

i,e 

�E lb1 
i,e 

· �E i,e + C curr 
i,e 

]

∀ i ∈ I (11) 

ection 3 (small increase): 

 e · (�E i,e + E curr 
i,e ) ≥ αi,e, 3 ·

[
C ub1 

i,e 
− C curr 

i,e 

�E ub1 
i,e 

· �E i,e + C curr 
i,e 

]

∀ i ∈ I (12) 

ection 4 (large increase): 

 e · (�E i,e + E curr 
i,e ) ≥ αi,e, 4 ·

[
C ub2 

i,e 
− C ub1 

i,e 

�E ub2 
i,e 

− �E ub1 
i,e 

· (�E i,e − �E ub1 
i,e ) + C ub1 

i,e 

]

∀ i ∈ I 
(13) 

he energy price of each utility system i is determined with 

he energy cost from the demand-dependent energy cost [square 

rackets] divided by energy supplied by each utility system (round 

rackets). The energy price is defined to be greater 0: 

 e ≥ 0 (14) 

 

∼
i,e 

is the energy cost for the energy demand (�E ∼
i,e 

+ E curr 
i,e 

) . Be-

ause the two continuous variables energy price c e and difference 

f energy demand �E i,e are multiplied, the optimization problem 

s a mixed-integer nonlinear program (MINLP). 

The result of the energy-price minimization is the allocation of 

ow much energy is supplied by each utility system (�E i,e + E curr 
i,e 

) .

ased on the allocation, the demand-dependent energy cost is re- 

alculated and aggregated in Substep a4. The aggregated demand- 

ependent energy cost is the input of Step ➂. Step ➂ is explained 

n more detail in the following section. 
6 
.3. Coordination among production systems: Step ➂

In Step ➀, the production systems scheduled their production 

ssuming fixed energy prices. For the resulting energy demand, in 

tep ➁, the utility systems optimized their operation and deter- 

ined the energy cost for the given energy demand. In Step ➂, the 

roduction systems reschedule their production. As a price signal, 

he utility systems now provide demand-dependent energy cost. 

he aggregated demand-dependent energy cost approximates the 

nergy cost for changing energy demands. Here, the costs of all 

tility systems are aggregated into a single cost curve. This aggre- 

ated demand-dependent energy cost is considered in Step ➂ to 

eschedule the production systems. 

In Step ➂, each production system reschedules the production 

ndependently. For this purpose, each production system needs to 

now its demand-dependent energy cost. Thus, we need to allo- 

ate the aggregated demand-dependent energy cost to the individ- 

al production systems. For this purpose, we perform substeps in 

tep ➂ such that each production system assumes the correct en- 

rgy cost while rescheduling only its own production. 

This coordination occurs 4 Substeps b1–b4 ( Fig. 2 ): 

• Substep b1: The energy costs from Step ➁ are allocated ac- 

cording to the current energy demand of each production sys- 

tem. Thus, the specific energy price for the current energy de- 

mand is the same for each production system, but the energy 

cost differs due to the different current energy demands. Con- 

sequently, each production system has an individual base of the 

demand-dependent energy cost ( Fig. 3 ). The linear sections of 

the aggregated demand-dependent energy cost, e.g., from E curr 
i,e 

to ( E curr 
i,e 

+ �E lb1 
i,e 

), are equally allocated to all production sys- 

tems ( Fig. 5 ). Thus, all production systems have linear sections 

of the same size but with different current energy demands. 
• Substep b2: Each production system reschedules the production 

considering its allocated demand-dependent energy cost from 

Substep b1. 
• Substep b3: The coordination is finished if no production sys- 

tem changed its energy demand compared to the previous iter- 

ation or the maximum number of iterations is reached. Other- 

wise, Substep b4 is performed. 
• Substep b4: Substep b4 removes potential errors from the allo- 

cation used in Substep b2. In Substep b2, every production sys- 

tem rescheduled independently and, consequently, the energy 

demands have changed independently. Each production sys- 

tem calculated the energy cost based on its allocated demand- 

dependent energy cost from Substep b1. However, the sum of 

energy cost calculated by each production system individually 

might not be consistent with the energy cost from the non- 

allocated demand-dependent energy cost. To achieve consistent 

cost, the allocation from Substep b1 is revised in Substep b4. 

Details on the reallocation are explained at the end of this sec- 

tion. 

The output of Step ➂ is the energy demand of all production 

ystems. 

.3.1. Reallocation of demand-dependent energy cost (Substep b4) 

In Substep b2, the production systems reschedule their pro- 

uction based on the demand-dependent energy cost. In the 

escheduling, each production system calculated its energy cost in- 

ependently. However, these energy costs might not be the same 

s obtained by summing all energy demands and using the aggre- 

ated demand-dependent energy cost. This inconsistency is fixed 

n Substep b4. 

The potential inconsistency is illustrated in Fig. 6 . In this exam- 

le, the energy demand of production system 1 does not change by 

he rescheduling, while the energy demand of production system 2 
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dependent energy cost is split in half (right). Here, we illustrate the allocation for an aggregated demand-dependent energy cost with only 4 linear sections and, thus, one 
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ncreases strongly. The rescheduled energy demand of production 

ystem 2 is located in the linear section for large increases in en- 

rgy demand. Thus, production system 2 assumes to pay a high 

ost for its energy demand. However, if the energy demands of 

roduction system 1 and 2 are added and the energy cost are de- 

ermined with the non-allocated demand-dependent energy cost, 

he actual energy cost of production system 2 is lower. The energy 

ost is lower because the energy demand is now correctly located 

n the linear section for a small increase. 

We fix this inconsistency by reallocating the demand- 

ependent energy cost as follows: For production system 1, we 

imit the linear section for small increases to the rescheduled en- 

rgy demand. The available energy supply with the lower energy 
7 
rice is distributed equally among the other production systems 

here the rescheduled energy demand increased strongly. The re- 

istribution is also illustrated in Fig. 6 . By this redistribution, the 

nergy cost calculated independently by each production system 

quals the energy cost from the non-allocated demand-dependent 

nergy cost. Thus, the cost allocation is consistent. The same prin- 

iple for reallocation is used for decreasing the energy demand. 

. Case studies 

The proposed method to coordinate the scheduling of multiple 

roduction and utility systems is applied to 2 case studies. In Case 

tudy I ( Section 3.1 ), we model 2 production systems and 2 util- 
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Fig. 7. Production system from Kallrath (2002) . The figure is adapted from Leenders et al. (2019a) . 
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ty systems. In Case study II ( Section 3.2 ), we apply our method to

 larger case study by modeling 4 production systems and 2 util- 

ty systems. Furthermore, we generate 10 instances of both case 

tudies. We apply our method to the instances and, thereby, show 

he benefits of the proposed method more generally. Our method 

s compared to sequential and integrated optimization. Sequential 

ptimization represents the benchmark approach. A second bench- 

ark is introduced by the integrated optimization that employs 

he total cost for the operation of the production system and the 

nergy supply. Integrated optimization represents a best case that 

ould require the exchange of complete information and the con- 

rol of the production systems over the operational decisions of 

he utility systems. For a Stackelberg game, the minimal achiev- 

ble cost under complete information sharing would require the 

olution of a bilevel problem. The solution of the resulting mixed- 

nteger linear bilevel problem would require a dedicated solution 

lgorithm. The development of such a solution algorithm is part of 

urrent research. 

In both case studies, we propose that the utility systems pass 

heir utility cost on to the production systems without an addi- 

ional profit margin. Thus, the overall cost is the sum of produc- 

ion cost and utility cost. The sequential optimization minimizes 

roduction cost. The proposed methods might increase produc- 

ion cost while reducing utility cost such that the overall cost is 

ecreased. This decrease is beneficial for the production systems, 

hile there are currently no incentives for the utility system in 

he given setting to decrease the utility cost. Thus, in reality, the 

roduction systems have to share their profit from the proposed 

ethod with the utility systems. Alternatively, the utility system 

ight not share all cost reduction with the production system. 

n the case studies, we do not propose a method to share prof- 

ts since we want to present the changes in production and utility 

ost without the impact of a concept for profit sharing. However, 

s overall cost decreases while still supplying the same amount of 

roduct, the situation with profit share should be mutually benefi- 

ial for all parties. 

.1. Case study I 

.1.1. Description 

In this case study, we model an industrial site with 2 pro- 

uction systems and 2 utility systems. The production systems 

re based on the case studies from Kallrath (2002) ( Fig. 7 ) and

ondili et al. (1993) ( Fig. 8 ). For each task of the production sys-

ems, we added electricity and heat demands. The product demand 

f the production systems is fixed at the time horizon of 30 h. 
8 
roduction system 1 ( Kallrath, 2002 ) has the following product de- 

and: 20 t of State 16; 20 t of State 17 and 20 t of State 19 ( Fig. 7 ).

roduction system 2 ( Kondili et al., 1993 ) has the following prod- 

ct demand: 300 t of State 7 and 550 t of State 10 ( Fig. 8 ). 

Both utility systems are based on the model by Voll et al. 

2013) . Utility system 1 has 2 boilers (3 MW, 1 MW) and 1 

ombined-heat-and-power engine (3 MW) for the energy supply. 

tility system 2 has 3 boilers (4 MW, 1.5 MW, 0.5 MW) and 

 combined-heat-and-power engines (each 1.5 MW) for the en- 

rgy supply. The utility systems can buy electricity from the grid 

or 0.16 €/kWh, sell electricity for 0.1 €/kWh and buy gas for 

.06 €/kWh. For the sequential optimization, each production sys- 

em is supplied by only one utility system. Utility system 1 sup- 

lies production system 1 and utility system 2 supplies production 

ystem 2. A sequential optimization with an integrated optimiza- 

ion of the production systems and an integrated optimization of 

he utility systems would be slightly beneficial but is not consid- 

red here. 

All optimization problems are formulated in GAMS 24.7.3 

 Development Corporation, 2016 ). The scheduling problems of the 

roduction and utility systems (MILP) are solved with CPLEX 

2.6.3.0 ( IBM Corporation, 2015 ). The time limit to schedule the 

roduction systems is set to 7200 s and the optimality gap is 

et to 0.5%, and the maximal number of iterations in Step ➂ is 

et to 10. The time limit of the integrated optimization is set to 

6,400 s. For the instances, the time limit of all optimization prob- 

ems is set to 50 0 0 s. The scheduling of the utility systems is

olved within few seconds to optimality. The optimization problem 

or the energy price minimization (MINLP) is solved with DICOPT 
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Fig. 9. Cost in Case study I for the different optimization approaches: The common sequential optimization between each production system and the corresponding utility 

system (benchmark: sequential = 100%), the multi-leader multi-follower Stackelberg game solved by the proposed coordination method (multi-leader multi-follower) and 

the integrated optimization of all systems (integrated). In the integrated optimization, the cost of the utility systems cannot be assigned to the different systems, because 

the cost for additional electricity cannot be allocated unambiguous. 
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Fig. 10. Case study I: Demand-dependent electricity cost in time step 5 during iteration 1 (a,c) and 2 (b,d) of Step ➂. Demand-dependent electricity costs of production 

system 1 are shown in (a) and (b) and demand-dependent electricity costs of production system 2 are shown in (c) and (d). From iteration 1 to iteration 2, production 

system 2 decreases the electricity demand such that the electricity demand extends the section for small decreases . Thus, the linear section for small decreases is increased for 

production system 2 since production system 1 increases it’s electricity demand. By this extension of the linear section for small decreases , the electricity cost for production 

system 2 decreases. For production system 1, the linear section for small increases is extended similar since the electricity demand increases such that the electricity demand 

extends the section for small increases . 
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 Kocis and Grossmann, 1989 ) using CONOPT 3.17A ( Drud, 1996 ) for

olving the NLPs and CPLEX 12.6.3.0 for solving the MILPs. 

.1.2. Results 

In Case study I, the proposed method saves 7.6% of total produc- 

ion cost compared to the sequential optimization ( Fig. 9 ). In the 

equential optimization, first, the production systems are sched- 
9 
led and the energy demand is determined. Subsequently, the cor- 

esponding utility systems are scheduled for the given energy de- 

and. The integrated optimization saves 9.1% compared to the se- 

uential optimization ( Fig. 9 ). Thus, the proposed method reaches 

4% of the potential cost reduction by an integrated optimization. 

The proposed method decreases total cost by decreasing energy 

ost. The energy cost is 15.2% lower than in the sequential opti- 
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Fig. 11. Case study I: Energy demand of the production systems for the sequential 

optimization and for the proposed method to coordinate the multi-leader multi- 

follower Stackelberg game (electricity (a) and heat (b) demand). 
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ization, while the production cost increases by 3.3% ( Fig. 9 ). In 

um, the overall cost decrease. 

The reduction in energy cost results from different energy de- 

ands in the proposed method and the sequential optimization 

 Fig. 11 ): The proposed method decreases the peak demand for 

lectricity by 23.7% compared to the sequential optimization. The 

eak of the heat demand increases by 8.2%. Furthermore, the over- 

ll electricity demand decreases by 17.9%, while the heat demand 

ncreases by 7.8%. In absolute numbers, the sum of heat and elec- 

ricity demand only changed slightly (-2%). The energy demand is 

hifted from electricity to heat by choosing different tasks to pro- 

uce the desired products. The decreased electricity demand re- 

ults in a lower share of electricity from the electricity grid: In the 

equential optimization, 31.9% of the electricity is supplied by the 

lectricity grid compared to only 7.4% in the proposed method. The 

ntegrated optimization even reduces the electricity supply from 

he electricity grid to 0.8%. 

The proposed method proceeded as follows: In Step ➀, the pro- 

uction systems are scheduled while assuming fixed energy prices. 

n this case study, we assumed the grid price for electricity and the 

as price for heat. In Step ➁, the utility systems optimize their op- 

ration for the energy demand from Step ➀. Initially, (Substep a2 

f Step ➁) the energy demand is heuristically allocated to the util- 

ty systems. Optimization leads to overall cost that is already 3.1% 

ower than in the sequential optimization. In the following Substep 

3, the energy demand is allocated based on an energy price min- 

mization. For the newly allocated energy demand, the utility sys- 

ems reoptimize their operation in Substep a4, leading to overall 

ost savings of 3.3% compared to the sequential optimization. Thus, 

he main savings of Step ➁ are already obtained in Substep a2 be- 

ause the heuristic allocation of the energy demand works already 

ell in this case study. Here, the heuristic allocation is based on 

he maximum capacity of the utility systems. For applications to 

ther utility systems, the energy-price minimization might have a 

arger impact because in this case study, we use the same compo- 

ent models and thus similar efficiency curves for the components 

n the utility systems. If the utility systems have different compo- 

ents, the savings from the energy-price minimization in Substep 

3 are expected to increase. 

The results of Step ➁ are the demand-dependent energy costs 

n each time step. The demand-dependent energy costs reflect the 

rices for heat and electricity paid from the production systems 

o the utility systems. For each time step, we obtain demand- 

ependent energy costs. On average, the electricity price for a 

mall increase in demand is 0.129 €/kWh and for a small decrease 

.121 €/kWh. For heat, the average price for a small increase is 

.059 €/kWh and for a small decrease 0.058 €/kWh. Thus, on aver- 

ge, the price signal incentives demand reduction and emphasizes 

lectricity over heat demand. 

In Step ➂, the production systems are rescheduled in 6 itera- 

ions. Within these iterations, the demand-dependent energy cost 

s reallocated until the production systems do not change their 

nergy demand anymore. We exemplary show the reallocation of 

he demand-dependent energy cost of production system 1 and 

 from iteration 1 to iteration 2 in time step 5 for electricity 

 Fig. 10 ). From iteration 1 to iteration 2, production system 2 de- 

reases the electricity demand by 663 kWh, while production sys- 

em 1 increases the electricity demand by 550 kWh. The decrease 

f production system 2 is larger than the range for small decrease 

483 kWh) in iteration 1 and thus corresponds to a large decrease 

cf. Fig. 3 ). 

However, overall, there is no large decrease in energy demand 

ince production system 1 increases its demand. In iteration 2, the 

ost ranges are therefore reallocated. In particular, the range for 

mall decreases not used by production system 1 is transferred 

o production system 2. Thereby, the linear section for small de- 
10 
reases increases for production system 2 by 483 kWh and thus, 

anges over 966 kWh in iteration 2. By this extension of the lin- 

ar section for small decreases, the electricity cost for production 

ystem 2 decreases. For production system 1, the linear section for 

mall increases is extended similar since the electricity demand in- 

reases such that the electricity demand extends the section for 

mall increases. 

In Fig. 10 , we also present the specific demand-dependent elec- 

ricity cost. For small decreases in electricity, the specific cost is 

.127 €/kWh. For large decreases in electricity, the specific cost is 

.1 €/kWh, which is equal to the price of selling electricity to the 

rid. For small and large increases in electricity, the specific cost is 

.16 €/kWh, which is the price of purchasing electricity from the 

rid. Thus, the demand-dependent electricity cost resolve at which 

oint the system switches to buying or selling from/to the grid and 

here internal electricity generation determines the cost. 

The actual cost savings resulting from Step ➂ are calculated 

n Step ➃, since Step ➂ employs only the approximate demand- 

ependent energy cost. In Step ➃, the utility systems optimize 

gain for the rescheduled energy demand, leading to final over- 

ll cost savings of 7.6% compared to the sequential optimization. 

hus, the largest cost savings (4.3%) are reached by the reschedul- 

ng and coordination of the production systems in Step ➂ in com- 

ination with the rescheduling of the utility systems. Hence, the 

emand-dependent energy costs enable the main cost savings by 

escheduling and coordinating the production systems. The pro- 

osed method solves the multi-leader multi-follower Stackelberg 

ame in 1791 s. Therein, step ➂ needs 6 iterations which takes 

433 s. The integrated optimization is solved in 728 s. The simi- 

ar short calculation time shows that the proposed method can be 

mplemented in daily scheduling. 
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10 20 30 40 50 60 70 80 90 1000

relative total production cost in %

sequential

multi-leader multi-follower

integrated

US1 US2 PS1 PS2 PS3 PS4

US1 US2 PS1 PS2 PS3 PS4

US1&US2 PS1 PS2 PS3 PS4

utility system (US)

production system (PS)

Fig. 12. Cost in Case study II for the different optimization approaches: The common sequential optimization between each production system and the corresponding utility 

system (benchmark: sequential = 100%), the multi-leader multi-follower Stackelberg game solved by the proposed coordination method (multi-leader multi-follower) and 

the integrated optimization of all systems (integrated). In the integrated optimization, the cost of the utility systems cannot be assigned to the different systems, because 

cost for additional electricity cannot be allocated unambiguous. 

a)

b)

Fig. 13. Case study II: Energy demand of the production systems for the sequential 

optimization and for the proposed method to coordinate the multi-leader multi- 

follower Stackelberg game (electricity (a) and heat (b) demand). 

s  

p

a

t

t

t  

t

e

c

o

p

t

(

t

s

t

q

i

u

3

3

i

P

K  

o  

s

o

t  

i  

2

q

3  

1

g

m

p

a

i

(

t

3

q

i

r

a

i

f

In Case study I, we generated 10 instances with Latin-hypercube 

ampling ( McKay et al., 20 0 0 ) if constant electricity prices are

resent. The instances are generated with variations of ±20 % 

round the original energy demands of the production systems. For 

hese 10 instances, the proposed method reduces the total produc- 

ion cost on average by 9.1% compared to the sequential optimiza- 

ion ( Table 1 ). The cost savings even correspond to 90% of the in-

egrated optimization (10.2%). Thus, the proposed method largely 

xploits the potential for cost reductions while only exchanging in- 

omplete information. 
11 
Additionally, to the constant electricity prices, we also applied 

ur method for time-of-use electricity prices are present. For this 

urpose, we used the time-variation of the electricity prices from 

he German spot market. We used data starting at 15.7.2020, 0 a.m. 

 Bundesnetzagentur | SMARD.de 2020 ). The results are similar to 

he case with constant electricity prices. The proposed method re- 

ults in cost savings of 7.4% compared to the sequential optimiza- 

ion. The integrated optimization saves 8.4% compared to the se- 

uential optimization. Thus, for Case study I, the proposed method 

s even closer to the integrated optimization if we apply time-of- 

se electricity prices. 

.2. Case study II 

.2.1. Description 

In this case study, we apply the proposed method to a large 

ndustrial site with 4 production systems and 2 utility systems. 

roduction systems 1 and 3 are based on the case study from 

allrath (2002) ( Fig. 7 ) and production systems 2 and 4 are based

n the case study from Kondili et al. (1993) ( Fig. 8 ). Similar to Case

tudy I, we added electricity and heat demands to the tasks. 

The product demands in Table 2 have to be fulfilled at the end 

f the time horizon of 30 h. The models of the two utility sys- 

ems are again based on the model by Voll et al. (2013) . Util-

ty system 1 has 4 boilers (3.5 MW, 3 MW, 2 MW, 1 MW) and

 combined-heat-and-power engines (3 MW, 2 MW). In the se- 

uential optimization, utility system 1 supplies production systems 

 and 4. Utility system 2 has 6 boilers (5 MW, 4 MW, 1.5 MW,

.5 MW, 0.5 MW, 0.5 MW) and 4 combined-heat-and-power en- 

ines (2.5 MW, 1.5 MW, 1.5 MW, 1 MW). In the sequential opti- 

ization, utility system 2 supplies production systems 1 and 2. The 

rices to buy gas, buy electricity and sell electricity are the same 

s in Case study I. The optimization problems are also formulated 

n GAMS 24.7.3 and solved with the same solvers as Case study I 

 Section 3.1.1 ). The maximal number of iterations in Step ➂ is set 

o 10. 

.2.2. Results 

The proposed method saves 3.4% in cost compared to the se- 

uential optimization ( Fig. 12 ) and is solved within 58,094 s. The 

ntegrated optimization reaches the time limit of 86,400 s with a 

emaining gap of 1.2%. If we evaluate the integrated optimization 

fter the solution time of the proposed method (58,094 s), the 

ntegrated optimization saves 3.8%. However, a better solution is 

ound after the time limit of 86,400 s with cost savings of 3.91% 
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Table 1 

Cost savings of different optimization approaches in % compared to sequential optimization for the instances of Case study 

I. 

instance 1 2 3 4 5 6 7 8 9 10 ∅ 

integrated 9.86 10.71 10.46 10.31 9.95 10.15 10.25 10.65 10.42 8.72 10.15 

proposed method 9.21 10.51 9.94 9.56 8.61 8.34 8.81 9.84 9.14 7.06 9.11 

Table 2 

Product demand of the production systems in Case study II. 

Production system 1 2 3 4 

Product 

demand 

State 16: 20 t State 7: 300 t State 15: 20 t State 7: 500 t 

State 17: 20 t State 10: 550 t State 17: 20 t State 10: 250 t 

State 19: 20 t State 18: 20 t 

Table 3 

Cost savings of different optimization approaches in % compared to sequential optimization for the instances of 

Case study II. All integrated optimization problems reached the time limit before reaching the optimality gap. 

instance 1 2 3 4 5 6 7 8 9 10 ∅ 

integrated 4.04 3.54 5.38 3.62 4.63 4.07 4.32 3.81 4.00 4.47 4.19 

proposed method 2.75 1.84 4.76 2.18 4.75 2.54 4.82 1.22 5.00 3.48 3.33 
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 Fig. 12 ). Thus, the proposed method is near the cost savings of 

he integrated optimization (88%). Again, the cost savings results 

rom large savings in energy costs by 7.4%, while production cost 

ncrease by 1.3% ( Fig. 12 ). As in Case study I, the total production

ost is decreased as a sum of energy cost and production cost. 

The proposed method changes the total energy demand com- 

ared to the sequential optimization ( Fig. 13 ): The peak demand 

or electricity is increased by 9.6%, the peak demand for heat is 

ncreased by 15%. Again, the overall electricity demand decreases 

12%) while the heat demand increases (2.8%). Since the heat de- 

and is much higher than the electricity demand, the overall en- 

rgy demand changes only slightly ( −2.8%). The shift from heat to 

lectricity is possible because the production systems change their 

roduction schedules to produce the desired products. Again, the 

lectricity supply by the electricity grid decreases (sequential 8.1%; 

roposed method 3.2%). Thus, the utilization of the on-site utility 

ystem increases. 

For Case Study II, after Substep a2 in Step ➁, we reach cost sav-

ngs of 1.7% compared to the sequential optimization. After Substep 

4, the cost savings are nearly similar (1.7%). Thus, as in Case study 

, the allocation by the heuristic already provides a good solution. 

till, we believe step a4 is crucial for settings with energy systems 

hat are very different in size and employed technologies. After 

oordination between the production systems using the demand- 

ependent energy cost (Step ➂ and ➃), the overall cost savings are 

.4%. Thus, as in Case study I, the rescheduling and coordination 

f the production systems in Step ➂ and the rescheduling of the 

tility systems enable additional cost savings. Consequently, Steps 

and ➁ are the basis for expanding the cost savings in Steps ➂

nd ➃. 

Again, we generated 10 instances of the energy demands by 

atin-hypercube sampling ( McKay et al., 20 0 0 ) if constant electric- 

ty prices are present. The instances are generated with variations 

f ±20 % around the original energy demands of the production 

ystems. For the instances, the proposed method reduces the cost 

n average by 3.3% ( Table 3 ) and, thus, is close to the integrated

ptimization (4.2%). Consequently, 79% of the potential cost reduc- 

ion by integrated optimization is reached. All integrated optimiza- 

ion problems reached the time limit before proving optimality. In 

 instances, the proposed method results in even higher cost sav- 

ngs than the integrated optimization which did not solve to opti- 

ality within the time limit. The solution of the proposed method 

ies within the remaining gap of the integrated optimization. 
p

12 
Also, for Case study II, we applied our method for time-of- 

se electricity prices. Again, we used German spot market’s elec- 

ricity prices, starting at 15.7.2020, 0 a.m. ( Bundesnetzagentur | 

MARD.de 2020 ). With these time-of-use electricity prices, the 

roposed method saves 3.0% of the overall cost compared to the 

equential optimization. The integrated optimization saves 3.9%. 

hus, the proposed method also reaches a large share of the po- 

ential cost savings of the integrated optimization in case of time- 

f-use electricity prices. 

The case studies show the benefits of the proposed method. 

owever, since the proposed method is a heuristic that cannot 

uarantee the optimal solution, the proposed method’s benefits 

iffer for both case studies. In Case study II, the additional produc- 

ion systems supply products not demanded in Case Study I. Fur- 

hermore, the utility systems have more and different components. 

till, in both case studies, improved production schedules are iden- 

ified that result in energy demands with significantly lower en- 

rgy cost. The lower energy cost outweighs the slightly increased 

roduction cost. Although both case studies are different, the cost 

avings in the instances are high with 90% on average in Case 

tudy I and 79% on average in Case study II. 

. Conclusions 

Commonly, the operation optimization of production and utility 

ystems in industrial sites is sequentially performed without feed- 

ack iterations. In this paper, we proposed a method to reduce the 

otal production cost of multiple production systems in a multi- 

eader multi-follower Stackelberg game. The method exchanges 

nly incomplete information. Thus, the method can be employed 

or the practical situation in which the systems are operated by 

ifferent companies. The incomplete information exchanged is the 

nergy demand and demand-dependent energy cost. The method 

mploys energy cost in one feedback iteration. 

The method is tested for two case studies. In the case studies, 

he total production cost is reduced by 7.6% and 3.4% compared 

o the common sequential optimization. The method realizes 84% 

nd 88% of the potential cost reduction by an integrated optimiza- 

ion based on complete information exchange. The cost savings by 

he proposed method are obtained by revised production sched- 

les. The revised production schedules lead to slightly increased 

roduction cost, but significantly decreased energy cost. The pro- 

osed method is further validated by large computational studies 
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f 10 instances for both case studies. The computational studies 

how an average benefit of the proposed method by cost savings 

f 90% and 79% of the integrated optimization. 

The proposed method significantly reduces total production 

ost, while only exchanging incomplete information between pro- 

uction and utility systems in one feedback iteration. Thus, the 

ethod is well suited for practical applications. 
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