001     904191
005     20240712112914.0
024 7 _ |a 10.1016/j.compchemeng.2021.107406
|2 doi
024 7 _ |a 0098-1354
|2 ISSN
024 7 _ |a 1873-4375
|2 ISSN
024 7 _ |a 2128/30375
|2 Handle
024 7 _ |a WOS:000683569900014
|2 WOS
037 _ _ |a FZJ-2021-05761
082 _ _ |a 660
100 1 _ |a Reinert, Christiane
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Environmental impacts of the future German energy system from integrated energy systems optimization and dynamic life cycle assessment
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642749640_7161
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mitigating climate change requires a fundamental transformation of our energy systems. This transformation should not shift burdens to other environmental impacts. Current energy models account for environmental impacts using Life Cycle Inventories (LCIs) that typically rely on historic processes. Thus, the LCIs are static and do not reflect improvements in underlying background processes, e.g., in the energy supply. Dynamic Life Cycle Assessment (LCA) incorporates changes in the LCI and allows for a consistent assessment of future energy systems. We integrate dynamic LCA in a national energy system optimization and discuss the differences between employing static and dynamic LCA in energy system optimization and assessment. Dynamic LCA leads to lower environmental impacts in most categories (e.g., climate change: -18%) and is required for a quantitative environmental assessment. However, our analysis shows that static LCA is sufficient to identify general trends in energy system optimization and assessment for Germany till 2050.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Deutz, Sarah
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Minten, Hannah
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Dörpinghaus, Lukas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a von Pfingsten, Sarah
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Baumgärtner, Nils
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.compchemeng.2021.107406
|g Vol. 153, p. 107406 -
|0 PERI:(DE-600)1499971-7
|p 107406 -
|t Computers & chemical engineering
|v 153
|y 2021
|x 0098-1354
856 4 _ |u https://juser.fz-juelich.de/record/904191/files/1-s2.0-S0098135421001848-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904191
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)172023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)172023
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT CHEM ENG : 2019
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21