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a b s t r a c t 

Mitigating climate change requires a fundamental transformation of our energy systems. This transforma- 

tion should not shift burdens to other environmental impacts. Current energy models account for envi- 

ronmental impacts using Life Cycle Inventories (LCIs) that typically rely on historic processes. Thus, the 

LCIs are static and do not reflect improvements in underlying background processes, e.g., in the energy 

supply. Dynamic Life Cycle Assessment (LCA) incorporates changes in the LCI and allows for a consistent 

assessment of future energy systems. We integrate dynamic LCA in a national energy system optimiza- 

tion and discuss the differences between employing static and dynamic LCA in energy system optimiza- 

tion and assessment. Dynamic LCA leads to lower environmental impacts in most categories (e.g., climate 

change: -18%) and is required for a quantitative environmental assessment. However, our analysis shows 

that static LCA is sufficient to identify general trends in energy system optimization and assessment for 

Germany till 2050. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 
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. Introduction 

Climate change mitigation requires a shift in energy supply, 

rom fossil towards renewable energy resources. This shift fun- 

amentally changes national energy systems all over the world. 

o plan the transition of national energy systems, long-term 

nergy models support policymakers. One major challenge for 

he energy transition is the potential burden shifting from cli- 

ate change to other environmental impacts ( Algunaibet and 

uillén-Gosálbez, 2019 ). To consider the environmental burden- 

hifting, energy models need to assess energy systems holistically, 
Abbreviations: AC, alternating current; APOS, allocation at point of substitution; 

NG, compressed natural gas; CPLEX, optimization package IBM ILOG CPLEX Op- 

imization Studio; DC, direct current; GAMS, Generalized Algebraic Modeling Sys- 

em; GHG, greenhouse gas; IEA, International Energy Agency; ILCD2, Environmental 

ootprint 2.0; JRC, Joint Research Center; LCA, Life Cycle Assessment; LCI, Life Cy- 

le Inventory; OECD, Organization for Economic Co-operation and Development; PV, 

hotovoltaics; SecMOD, sector-coupled energy system model. 
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or which Life Cycle Assessment (LCA) is a well-suited method 

 Ringkjøb et al., 2018 ). 

Today, LCA is typically employed subsequently to the energy 

ystem optimization (soft-linking approach, e.g., Blanco et al., 

020 and Junne et al., 2020 ). Integrating LCA directly in the op- 

imization problem leads to more consistent results, as otherwise, 

he environmental constraints in the optimization are inconsistent 

o the assessment. However, direct integration is also more com- 

lex ( Holz et al., 2016 ). Thus, only a few models integrate LCA di-

ectly into the energy system optimization (integrated approach, 

.g., Volkart et al., 2018 and Tokimatsu et al., 2020 ). 

Life Cycle Inventories (LCIs) describe the overall inputs 

nd outputs of all processes within the respective system 

 ISO14044:2006 ). It can be divided in a foreground system, de- 

cribing the direct emissions on-site, and a background system 

ith environmental impacts related to the consumable input pro- 

uction ( Saber et al., 2020 ). 

Integrating LCA in long-term energy models faces the chal- 

enge that LCA typically relies on historical data (static LCA, 

ehnt (2005) ). Historical data does not represent the actual life cy- 
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le inventories (LCIs), if the background processes change. For ex- 

mple, current inventories for the production of photovoltaic cells 

ill poorly represent production in 2050 ( Pehnt, 2005 ). In their re- 

ent review, van der Giesen et al., 2020 thus highlight dynamic 

CA, i.e., the modification of background processes and their in- 

egration into integrated assessment models, as a significant chal- 

enge of applying LCA to future systems. The term dynamic LCA it- 

elf is currently not standardized. In this paper, we follow van der 

iesen et al., 2020 and Pehnt (2005) and define “dynamic LCA”

s LCA employing a time-dependent background system. Dynamic 

CA considers changes in the background processes of the LCI and, 

herefore, allows for a consistent assessment of future environmen- 

al impacts, e.g., in Hertwich et al. (2015) . 

The full integration of dynamic LCA in national energy systems 

s challenging and thus currently not yet state of the art (e.g., 

urconi et al., 2014 ; Rauner and Budzinski (2017) ; Algunaibet and 

uillén-Gosálbez, 2019 ). On a national scale, García-Gusano et al., 

016 built a partly dynamic model to assess the Spanish electric- 

ty sector. However, the LCIs of the considered technologies remain 

tatic. Thus, global transitions in the energy systems are not re- 

ected. Volkart et al., 2018 combine global energy systems opti- 

ization and LCA in an integrated model to include dynamic LCA 

odel-endogenously. However, this integrated approach can not be 

ransferred to national energy systems since global transitions are 

eyond the national models’ scope. In national models, global ef- 

ects on the LCI data need to be integrated exogeneously into the 

ational optimization model. 

Recently, dynamic LCA has been integrated into the assessment 

f national energy systems ( Blanco et al., 2020; Junne et al., 2020 )

sing a soft-linking approach. In general, energy models incorpo- 

ating LCA are usually not publicly available, despite recent effort s 

 Vandepaer et al., 2020 ). Assessing future energy systems is crucial 

or planning of sustainable energy systems. For a consistent assess- 

ent, dynamic LCA should be adopted in energy system optimiza- 

ions incorporating LCA. However, dynamic LCA requires modifica- 

ions of the whole LCA database. Efficient approaches to directly 

ntegrate dynamic LCA in the optimization are is still missing. At 

he same time, the impact of dynamic LCA on the resulting energy 

ystems has not been analyzed. This paper’s central goals are to in- 

egrate dynamic LCA in national energy system optimization and to 

nalyze the differences between employing static and dynamic LCA 

n energy system optimization and assessment. To account for dy- 

amic LCA, we modify the background processes of an integrated 

ational energy systems optimization using global energy scenar- 

os. The presented method to generate dynamic LCA Databases is 

rovided as open-source code. We compare the resulting energy 

ystems when using the static and dynamic LCA databases. 

We combine an energy system optimization model for 

he German sectors electricity, heat, and transportation 

 Baumgärtner et al., 2021 ) with dynamic LCA: Baumgärtner et al., 

021 fully integrate LCA in an energy system optimization but 

re using static LCA. In this work, we integrate dynamic LCA in 

heir model to account for changes in the exogenous electricity 

upply of supply chains. Hence, we reflect international develop- 

ents caused by other countries’ changing electricity mix in the 

ssessment of our national energy system. As part of the ESCAPE 

pecial Issue, the present work extends the conference paper by 

einert et al., 2020 by providing the details, the open-source code 

o generate dynamic LCA Databases, and discussing the influence 

f modified background processes on the resulting sector-coupled 

nergy system in detail. 

In Section 2.1 , we first introduce our case study, the SecMOD 

odel. Section 2.2 comprises the modification of relevant back- 

round processes in the life cycle inventories (LCIs) of the tech- 

ologies used in SecMOD. In Section 2.3 , we discuss the issue of 

ouble counting. 
2 
In Chapter 3 , we compare static and dynamic LCA in two steps: 

irst, the transition pathways are analyzed that result from the op- 

imization. Applying dynamic LCA results only in moderate changes 

n the transition path, as the optimization is only constrained by 

perational emissions. 

Our environmental assessment, considering both infrastructural 

nd operational emissions, shows significant differences between 

tatic and dynamic LCA of the optimized German energy system in 

he year 2050. 

. Including dynamic background processes in national energy 

ystems optimization 

In this Section, we discuss the integration of dynamic LCA in 

nergy systems optimization ( Fig. 1 ). Section 2.1 introduces our 

ase study, a national energy systems optimization for the German 

nergy system, and discusses its link between energy systems op- 

imization and LCA. In Section 2.2 , we modify the background pro- 

esses of the LCIs for the technologies considered in the case study 

o account for changes in electricity generation in the background 

rocesses ( Fig. 1 ). 

.1. Case study: Sector-coupled energy system model SecMOD 

We perform a cost optimization of the German energy system 

onsisting of the sectors electricity, domestic and industrial heat- 

ng, and private transportation for the transition path from the 

ear 2016 - 2050. The linear energy systems optimization model 

ecMOD is based on mass and energy balances ( Baumgärtner et al., 

021 ), modeled in GAMS ( GAMS, 2016 ) and solved with CPLEX 

 IBM, 2016 ). In a brownfield design optimization, we extend the 

urrently existing German energy infrastructure (as in the year 

016). We consider exogeneous energy demands: electricity, cen- 

ralized and decentralized heat at different temperature levels (do- 

estic heat below 100 ◦C and industrial heat below 100 ◦C , be- 

ween 10 0–40 0 ◦C and above 400 ◦C ) and private transportation. 

s energy converters, we consider 

• fossil-based and renewable electricity generation (e.g., conven- 

tional plants, photovoltaics, wind, and other renewables), 
• heating on multiple temperature levels (e.g., oil-, methane- & 

electric boilers, and heat pumps), 
• private transportation (e.g., diesel, compressed natural gas 

(CNG), battery electric cars), and 

• power-to-X technologies (e.g., battery storage, power to gas, 

pumped storage, power to fuel). 

We optimize the system stepwise, using five-year steps until 

050. For each optimization period, we update the emission con- 

traints. Further, the costs for each component follow a learning 

urve (for details, see Baumgärtner et al., 2021 ). 

Current emission reduction policies typically target direct emis- 

ions only. However, Lopion et al., 2018 stress the need to con- 

train all operational emissions, including direct emissions and the 

pstream emissions of the background processes (e.g., mining of 

nergy carriers). Thus, we here constrain operational greenhouse 

as (GHG) emissions of all energy technologies. To assess all op- 

rational emissions, we use LCA by going beyond direct emissions 

nly. We decrease the GHG emission limit by up to 85% in the year 

050 (as in Baumgärtner et al., 2021 ). We chose the year 2050 as 

he year targeted in our work, as it is the target year for many 

olicies and therefore the time period most commonly studied in 

nergy systems models. Jaxa-Rozen and Trutnevyte (2021) recently 

xamined 1550 energy scenarios, out of which 1488 scenarios con- 

ider the year 2050. Our model allows assessing the energy system 

t several points in time between now and 2050. However, the dif- 

erences between employing static and dynamic LCA strongly de- 
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Fig. 1. Optimization of the German energy system using dynamic LCA ( Section 2.1 ). We modify the electricity-related background processes of the life cycle inventories 

(LCIs) using the multiregional scenario of the International Energy Agency (IEA)( Section 2.2 ). We solve double-counting by deleting emissions in the LCIs, already accounted 

for in the German energy system. 
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end on the developments of the electricity mix in other coun- 

ries compared to the static case. Due to a continuous decrease 

n electricity emission intensity, the difference between static and 

ynamic results increases with time. In 2050, we can thus ob- 

erve the largest differences between static and dynamic results 

o draw conclusions on the importance of dynamic LCA. As we 

onsider Germany as an isolated energy system without negative 

mission technologies, a carbon-neutral scenario is not achievable 

ithin the given constraints. 

The original time series is represented with an hourly resolu- 

ion and aggregated to typical time series ( Bahl et al., 2018 ) with

92 time steps (8 typical periods, subdivided into 24 time steps). 

e simultaneously optimize the design and operation of the en- 

rgy system using the aggregated time series. The spatial resolu- 

ion comprises 18 nodes (Dena-zones), interconnected by a power 

rid. The power grid is modeled using a direct current (DC) load 

ow approach ( Egerer, 2016 ). The DC load flow approach is widely 

dopted in long-term energy models and simplifies the alternat- 

ng current (AC) power flow. Alternative modeling approaches for 

he grid are a transshipment approach, which is simpler, or an AC 

ower flow approach, which accounts for losses but is computa- 

ionally more challenging. The DC load flow approach has been 

hown to combine computational simplicity with an acceptable 

evel of accuracy ( van den Bergh et al., 2014 ). 

After the optimization, we evaluate the energy system’s total 

nvironmental impacts (invest and operational). For the LCA of 

he resulting energy system, we employ data from ecoinvent 3.5 

 Wernet et al., 2016 ). ecoinvent is a well-established LCI database 

nd widely used in the assessment of energy models, as discussed 

n Astudillo et al., 2018 . The data is provided following three sys- 

em models: Cutoff, consequential, and APOS (allocation at the 

oint of substitution). As ecoinvent system model, we chose APOS 

o consistently consider recycling of materials. APOS does not de- 

end on marginal effects as the consequential approach and dis- 

ributes the impacts from recycling along the value chain. Thus, 

POS captures future energy systems best where material recy- 

ling will become increasingly important due to extensive infras- 

ructure. Several methods are available for impact assessment. Pop- 

lar impact assessment methods in energy modeling are CML (e.g., 

n Nabavi-Pelesaraei et al., 2017 , ReCiPe 2016 (e.g., Mostashari- 

ad et al., 2021 ), and Environmental Footprints 2.0 (ILCD2). We 

ssess environmental impacts using ILCD2, the life cycle impact 

ssessment method recommended by the European Commission’s 

oint Research Center (JRC) ( Fazio et al., 2018; Joint Research Cen- 
s

3 
er, 2010 ). Beyond this official recommendation, ILCD2 provides 

uality levels and hence indicates uncertainties of environmental 

mpacts. 

In ILCD2, a quality level is given for each environmental cate- 

ory, regarding completeness, relevance, robustness, transparency, 

pplicability, acceptance, and suitability. All impact categories with 

uality level I are recommended and satisfactory; quality level II is 

ecommended, but with some improvements needed. Quality level 

II is recommended but needs to be applied with caution. 

.2. Dynamic LCI: integration of future energy scenarios in the 

ackground processes 

The LCI data contains all processes that are required to pro- 

ide a product. A large part of these processes (e.g., energy supply) 

hanges over time so that historical LCIs cannot represent product 

upply in long-term scenarios. As the ecoinvent database consists 

f static LCI, it does not consider dynamic processes in the back- 

round system. We assume that while the process steps required 

o produce a product are relatively constant, the energy-related 

rocesses are likely to change strongly during the energy transi- 

ion. 

Since electricity is crucial to the climate change impact of the 

onsidered technologies (energy converters and grid elements), we 

ocus on the electricity sector for the dynamic LCA. Further inte- 

ration of heat and transport is possible by slightly modifying our 

ode (provided as open-source code and documented in the sup- 

orting information). 

To account for dynamics in the electricity sector, we integrate 

ong-term electricity scenarios in the background system. Namely, 

e consider the “2 ◦C scenario” for regionalized technology mixes 

y the International Energy Agency, 2017 (IEA scenario). The “2 ◦C 

cenario” by the IEA targets to limit global warming to 2 ◦C . The 

 

◦C scenario includes considerable additional commitment of re- 

ewable energies compared to those currently in place. Above 2 ◦C , 

 tipping point of irreversible damage of the environment could be 

eached. The IEA provides scenarios for 11 world regions from 2014 

o 2060 by estimating the annual electricity generation for the 16 

ost relevant energy conversion technologies. In SecMOD, we use 

inear interpolation to match years wherever necessary. 

Using the IEA scenario, we modify the ecoinvent 3.5 database 

 Wernet et al., 2016 ) by updating electricity market processes in 

he background system to generate dynamic LCIs for the full tran- 

ition path (2016–2050) considered in SecMOD. 
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Fig. 2. Resulting capacity of the German energy system in the year 2050 for the optimization using static and dynamic LCA data. The capacity is subdivided by the sectors 

electricity, heat, transport, and power-to-X. For each sector, the capacity is normalized to the total capacity in the static optimization. Here, PV refers to photovoltaics and 

CNG cars to compressed natural gas cars. 
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The modification has three main steps ( Fig. 1 , right): 

1. Identification of electricity market processes in ecoinvent 3.5. 

Brightway2 ( Mutel, 2017 ) and the wurst package ( Mendoza Bel- 

tran et al., 2018 ) were specifically developed to modify back- 

ground processes in ecoinvent. We use them to identify 

all electricity market processes in the aggregated ecoinvent 

database. We transform all low and medium voltage processes 

to high voltage, accounting for transformation losses (as in 

Mendoza Beltran et al., 2018 ). Hence, we obtain electricity mar- 

kets for all ecoinvent regions on high voltage level. 

2. Country matching between ecoinvent and IEA scenarios. 

For each high voltage electricity market, we match the ecoin- 

vent region (142 countries) to the respective IEA region (11 re- 

gions). Using the IEA scenario for the respective year, we update 

the electricity market mix with the regionalized IEA mix. If the 

ecoinvent region matches more than one IEA region, we use an 

average scenario. When there is no IEA region that matches the 

ecoinvent region available, we use lists to match the ecoinvent 

region to either a region which is a member of the Organiza- 

tion for Economic Co-operation and Development (OECD) or a 

Non-OECD region. If the ecoinvent region is in the OECD region, 

we use the OECD scenario. As a last option, if the ecoinvent re- 

gion could not be matched to any list, we use the global IEA 

scenario. 

3. Adaption of regional electricity market mix. 

We use the wurst package to modify the regional electricity 

market mix in the database according to the respective IEA 

scenario electricity generation mix. Each electricity generation 

scenario is based on multiple energy conversion technologies. 

For each technology, we determine a matching LCI: First, we 

search for an LCI in the same ecoinvent region as in the elec- 

tricity market mix. If not available, we search first for an LCI 

in the same IEA region, then for a global LCI and last for an

LCI in any region. The IEA scenario considers some energy con- 

verters which are not yet modeled in the ecoinvent database. 

We thus added the following LCIs: carbon capture and storage 

( Volkart et al., 2013 ), wave energy converters ( Thomson et al., 

2011 ), hydroelectric power stations ( Douglas et al., 2008 ), and 

concentrated solar power plants ( Mendoza Beltran et al., 2018 ). 

After identifying all LCIs needed, we update the ecoinvent mar- 

ket mixes with the regionalized IEA scenario mix. 

For each investment period of the SecMOD model, we gener- 

te dynamic LCIs based on the updated electricity market mixes 
4 
n each region. The full code to modify ecoinvent is provided and 

xtensively documented in the supplementary information (SI). 

.3. LCI modification: double counting 

We additionally modify the background processes to solve one 

ommon issue of combining LCA and national energy systems op- 

imization: double-counting ( Blanco et al., 2020; Lenzen, 2008 ). 

Double-counting occurs when the impacts of infrastructure pro- 

uced within the system boundaries are counted once in the LCI of 

he infrastructure and once in the operational emissions. 

For instance, if steel for a wind power plant is produced in Ger- 

any, energy-related impacts for the steel production in the LCIs 

re already accounted for in the operational emissions of the in- 

ustrial system producing the steel. To avoid double counting, the 

mpacts which are potentially double-counted must be removed ei- 

her from the operational emissions in the energy system model by 

ccurately reducing the energy demand, or from the inventories of 

he infrastructure by modifying the LCIs. 

Volkart et al., 2018 first solved the issue of double-counting by 

odifying LCIs. Their approach can be readily integrated into our 

roblem since we already modify the LCIs to integrate dynamic 

CA. 

. Results and discussion 

In this Section, we first discuss the influence of incorporating 

ynamic LCA as constraints in the optimization ( Section 3.1 ). Sec- 

nd, we discuss the influence of dynamic LCA on the different 

echnologies ( Section 3.2 ). Finally, we explore the effects of includ- 

ng dynamic LCA instead of static LCA in the environmental assess- 

ent ( Section 3.3 ). 

.1. Influence of dynamic LCA on technology choice in SecMOD 

Fig. 2 shows the German energy system’s infrastructure in the 

ear 2050 for both the static and dynamic optimization. For each 

ector, we normalize the capacity to the total capacity in the static 

ptimization. In 2050, the electricity sector is largely relying on 

ow-carbon technologies, such as wind and photovoltaics. The heat 

nd transport sectors are partly decarbonized by sector-coupling 

echnologies, such as heat pumps, battery electric cars, and power- 

o-X technologies. 

Despite attempting to represent reality, complex energy sys- 

ems models rely on numerous assumptions, e.g., spatial and tem- 

oral resolution, technology availability or cost ( Lopion et al., 
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Fig. 3. Relative climate change impact per infrastructure unit in the year 2050, compared to 2016. The electricity sector is shown in green, the heat sector in yellow, transport 

in blue and power-to-X technologies in gray. CNG refers to compressed natural gas. For the year 2016, we calculated each infrastructure unit’s impacts by regionalization and 

modified the LCI using the IEA energy mix of 2016 for each region. We further corrected for double counting. For the year 2050, we used the same method with the energy 

mix of 2050. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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018 ). All these assumptions influence the resulting system. It is 

hus important to be aware that the results of our optimization 

odel are just one possible transition scenario under the given 

odel assumptions ( Neumann and Brown, 2020 ). With our find- 

ngs, we hope to contribute to the debate about in what sense em- 

loying dynamic LCA will make a significant difference. 

The results from the energy systems optimization for Germany 

ill 2050 are rather similar for static and dynamic LCA. However, 

e observe lower capacities in the transport sector and for power- 

o-X technologies with dynamic LCA. The overall system cost in 

he year 2050 is 3% smaller in the dynamic case. Dynamic LCA 

eads to economic benefits since the operational emissions of back- 

round processes become less emission-intensive, such that some 

xpensive emission-reduction measures can be avoided in the fore- 

round system. While we believe that this trend will hold in gen- 

ral, the exact amount of cost savings still depends on numerous 

ssumptions. 

Comparing the resulting technologies for the year 2050 in the 

tatic and dynamic cases, we do not observe significant differences 

n the electricity and heat sectors ( Fig. 2 , left). However for some

echnologies, the background process modification shifts technol- 

gy preference. In the transportation sector, the technology pref- 

rence changes most strongly: The share of battery electric cars in 

he car fleet is reduced by 4% with dynamic LCA. In absolute terms, 

he number of battery electric cars is reduced by 32% compared to 

he static case. For the other transport technologies, the fleet is 

imilar in the static and the dynamic case. The overall transporta- 

ion demand is identical in both cases; however, in the dynamic 

ase, the operational impact of CNG car is reduced compared to 

tatic LCA and CNG thus becomes more favorable. A higher uti- 

ization of the CNG cars due to lower operational impacts in the 

ynamic LCA reduces the need for additional battery electric cars. 

Furthermore, in the power-to-X sector, we observe a reduction 

n battery storage capacity in the dynamic case. However, the an- 

ually stored energy is comparable in our study. The lower overall 

apacity extension of battery storage is caused by higher system 

exibility: In both cases, battery electric cars are charged following 

 fixed load curve, contrary to CNG cars. Thus, employing CNG cars 

ather than battery electric cars slightly reduces the fixed electric 

oad, as buying or producing CNG is more flexible. 

Overall, only few technologies majorly contribute to the oper- 

tional emissions that are constrained in our model. These main 
5 
ontributing technologies - mostly fossil-based - improve, when 

e use dynamic LCA. In year 2050, there are only few fossil-based 

echnologies left, mainly in the transport sector. The global reduc- 

ion in GHG emissions reduces the technology-specific operational 

HG emissions for these technologies in Germany. The lower spe- 

ific emissions reduce the necessary financial and technological ef- 

ort to meet national emission targets. The influence of dynamic 

CA in energy systems optimization is significant for the technolo- 

ies with highest marginal GHG abatement cost, in our case bat- 

ery electric cars. While leading to a higher share of technologies 

ith smaller GHG emissions in the future supply chain, the overall 

ecrease in technology-specific GHG emissions lowers the neces- 

ary share of technologies with high marginal GHG abatement cost. 

owever, the general technology trends do not change significantly 

hen we use dynamic LCA to constrain operational GHG emissions 

n the optimization. 

SecMOD accounts for additional costs for a modified charging 

nfrastructure for battery electric and fuel cell cars, leading to rel- 

tively high costs of these new technologies. In comparison to our 

esults, Baumgärtner et al., 2021 observe significantly higher shares 

f battery electric cars in 2050 (13% vs. 82%). However, during the 

nergy transition, they also identify CNG cars as transition technol- 

gy. Baumgärtner et al., 2021 also use static LCA, but prove system 

easibility with a full time series and longer foresight. Longer fore- 

ight favors battery electric vehicles: Despite high costs, they fur- 

her reduce GHG emissions and hence their share increases with 

tricter GHG limits. As all other model assumptions are identical 

o our model, the effect of temporal resolution and foresight thus 

xceeds the influence of choosing static or dynamic LCA in the op- 

imization. 

.2. Technologies in SecMOD: infrastructure-related emissions 

Decreasing operational GHG emissions during the energy tran- 

ition results in a higher relative importance of infrastructure 

missions for the overall GHG emissions: In our model, infrastruc- 

ure accounts for only 6% of total GHG emissions in 2016. Using 

tatic LCA, this share rises to more than 50% in 2050. The overall 

nfrastructure-related GHG emissions increase by almost a factor of 

our from 2016 to 2050 in static LCA. It is currently discussed that 

he whole supply chain, including infrastructure-related emissions, 

hould be considered in the optimization of future energy systems 
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Fig. 4. Total environmental impacts of the energy systems optimized and assessed with static and dynamic LCA for 2016 and 2050, relative to the static case in 2050. We 

sorted the environmental impact categories by decreasing influence of the dynamic LCA. The quality level of each category according to the JRC is indicated in brackets 

( Joint Research Center, 2010 ; Fazio et al., 2018 , see Section 2.1 ). 

t

i

d

t

t

e

L

r

t

i

f

r

w

t

m

c

t

f

p

(

t

m

t

s

3

s

t

t

b

d

c

o

p

n

i

c

L

i

w

v

c

e

L

g

T

i

I

l

i

s

3

m

L

s

o

B

t

c

m

t

w

l

o

e

n

l

p

o

w

e

o identify optimal transition pathways ( McDowall et al., 2018 ). As 

t is currently common to only constrain operational emissions, re- 

uctions of infrastructure-related impacts are not yet influencing 

echnology choice during the optimization. However, if infrastruc- 

ure emissions are incorporated in GHG emission constraints, we 

xpect a considerable increase in the importance of using dynamic 

CA in energy systems optimization. 

To quantify the effect of dynamic LCA on the infrastructure- 

elated emissions, Fig. 3 shows the relative change in infrastruc- 

ure emissions when the background processes are modified us- 

ng dynamic LCA. The climate change impacts reduce considerably 

or almost all sectors and technologies. Overall, the infrastructure- 

elated GHG emissions in 2050 are reduced by more than 30%, 

hen dynamic LCA instead of static LCA is employed. For each 

echnology, the reduction ranges between 5% and 65%. 

For power plants, the infrastructure-related impacts in our 

odel are reduced by mostly around 20% for the scenario in 2050, 

ompared to the base year. However, for energy-intensive infras- 

ructures, such as photovoltaics, we observe a decrease in in- 

rastructure impacts of 40% in the dynamic LCA. This strong de- 

endence has in fact motivated the introduction of dynamic LCA 

 Pehnt, 2005 ). We see the highest climate change impact reduc- 

ion for the geothermal power plant (- 65%), as electricity is the 

ain contributor to its climate change impacts. Similar to the elec- 

ricity sector, we observe reductions in infrastructure-related emis- 

ions for the year 2050 in all sectors. 

.3. Life cycle assessment of the low-carbon German energy system: 

tatic vs. dynamic 

After the optimization, we assess the environmental impacts of 

he resulting energy systems, consisting of optimized infrastruc- 

ure and operation. Fig. 4 shows the environmental impacts for the 

ase year 2016 and the final year 2050 for both the static and the 

ynamic GHG constraints. The results are normalized to the static 

ase, because static LCA is more commonly used in energy systems 

ptimization. 

When we compare the development of the environmental im- 

acts from year 2016 to year 2050, the results of static and dy- 

amic LCA are qualitatively similar. In both cases, impacts decrease 

n 10 out of 17 impact categories. However, we observe an in- 
6 
rease in seven impact categories. Thus, both static and dynamic 

CA identify similar environmental burden-shifting and co-benefits 

n the future energy system. 

Importantly, the overall climate change impact is 18% lower 

hen using dynamic LCA. Compared to the static case in 2050, en- 

ironmental impacts are up to 18% lower for most environmental 

ategories (9 out of 17). Five categories are not significantly influ- 

nced by applying dynamic LCA. 

In a quantitative comparison to static LCA, applying dynamic 

CA results in higher impacts in ionizing radiation (+ 25%), bio- 

enic climate change (+ 24%), and land use (+ 13%) for year 2050. 

he higher ionizing radiation is caused by some regions increas- 

ngly relying on nuclear power as a low-carbon technology in the 

EA scenarios. Further, the global intensification of biomass usage 

eads to higher land use and biogenic climate change. Dynamic LCA 

s able to reflect these global developments in a national energy 

ystem. 

.4. Critical discussion 

Large-scale models rely on many assumptions, e.g., in the opti- 

ization model, the scenarios used for the dynamization, and the 

CA method. These assumptions lead to uncertain results. In this 

ection, we discuss factors influencing the results. 

The learning curves for both costs and environmental impacts 

f the technologies used in our model underlie high uncertainties. 

aumgärtner et al., 2021 show that introducing optimistic cost es- 

imates for key technologies in 2050 could reduce energy systems 

ost by 40%. Despite different key assumptions in energy system 

odels, the overall trends are often similar: In future energy sys- 

ems, fossil fuels will be replaced by renewables, predominantly 

ind and photovoltaics. Further, the energy transition leads to 

arge amounts of additional electricity storage. The dynamization 

f the LCIs is technology-dependent, but independent of the en- 

rgy model used. Qualitatively, the results that follow from the dy- 

amization, i.e., the slight change in technology preference and the 

arger differences in expected environmental impacts, are therefore 

resumably transferable to other energy models. By providing the 

pen-source code to generate dynamic databases as model input, 

e hope to enable the integration of dynamic LCA in further en- 

rgy models. 
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Another source of uncertainty is due to the available LCI. 

.g., LCI data assumes a certain size for the assessed compo- 

ent, which is used as reference to calculate the costs and LCI. 

ahlawan et al. (2020) show that component sizing can signifi- 

antly impact environmental impacts. The LCIs we use are dimen- 

ioned on current typical technologies and then scaled in our lin- 

ar model, however, the typical sizing of energy converters may 

hange in the future. New types and sizes of energy converters 

ould change costs, environmental impacts, and technology pref- 

rences. 

Dynamic LCA can be further extended by prospective LCA, 

hich reflects technical advances in the LCIs, e.g., new technolo- 

ies, and efficiency improvements. As prospective LCA requires 

pecific knowledge of individual technologies, we excluded such 

onsiderations in this work. However, recent efforts allow to sim- 

lify and share prospective scenarios, which will likely enhance 

ata availability and applicability of prospective LCA in the future 

 Joyce and Björklund, 2021 ).When technology-specific improve- 

ents are taken into account, we expect them to further reduce 

nvironmental impacts in general, but trade-offs may still occur. 

In addition, the dynamization using scenario data itself is 

ighly uncertain. As well as in our model of the German en- 

rgy system, the scenario data from the IEA underlies uncertain 

ssumptions about possible technological preferences. Although 

he 2 ◦C scenario already includes considerable additional commit- 

ent of renewable energies compared to those currently in place, 

any studies propose even more ambitious climate targets (e.g., 

ntergovernmental Panel on Climate Change (2018) ). Depending 

n the employed technologies, a more ambitious scenario would 

ikely lead to a stronger reinforcement of the environmental effects 

tated in this work. 

For the impact assessment, each method has different impact 

ategories and metrics how inputs and outputs contribute to the 

verall impact. Some categories, such as global warming/climate 

hange are relatively similar and should thus lead to similar re- 

ults, even when other assessment methods are employed. To 

tudy this influence, we recalculated the study using ReCiPe 2008 

 Goedkoop et al., 2009 ) as alternative impact assessment method. 

sing ReCiPe, we observe a high increase in agricultural land occu- 

ation (39%) when employing dynamic LCA. In comparison, ILCD2 

hows 13% higher impacts in land use as well, but does not distin- 

uish between different kinds of land use. The reduction in the cli- 

ate change impact is comparable (18% reduction using ILCD2, and 

1% using ReCiPe). As the JRC recommends using ILCD2, we show 

he full results of the assessment using ILCD2 in Fig. 4 . Fig. 4 high-

ights a further source of uncertainty in the assessment: the im- 

act assessment methods themselves. The JRC recommends to em- 

loy several methods only with caution (quality level III). Thus, im- 

rovements are needed - and may affect the analysis of future en- 

ironmental impacts. 

Overall, energy system optimization can only identify one possi- 

le future subject to the cost and environmental projections made. 

ame-changing effects, as the application of new technologies 

e.g., carbon capture and storage), could change technology prefer- 

nce and hence lead to different ener gy systems and environmen- 

al impacts. Hence, our study describes one out of many possible 

utures. Jaxa-Rozen and Trutnevyte (2021) discuss a total of 1550 

uture energy scenarios and find large variations in technology- 

pecific cost assumptions, assumed policies and constraints. Robust 

nsights are therefore best derived by studying ensembles of mod- 

ls that span across levels of complexity and even organizational 

ackground. 

.5. Conclusion 

In this work, we discuss a method to optimize and assess 

 sector-coupled, national energy system using dynamic LCA. 

7 
hanges in the future electricity generation are incorporated by 

EA global energy scenarios. The dynamic LCA is applied to an 

ptimization for the cost-optimal energy transition in Germany 

ill 2050. Here, dynamic LCA does not lead to significant tech- 

ology shifts in the electricity and heat sectors since only opera- 

ional emissions are constrained in the optimization. In contrast, 

echnologies change especially in the transport sector when dy- 

amic LCA is employed. In particular, the number of battery elec- 

ric cars is reduced by 32% in the dynamic case, compared to the 

tatic case. Further, we show that dynamic LCA significantly re- 

uces infrastructure-related climate change impacts, compared to 

tatic LCA: we observe climate change reductions for all technolo- 

ies in all sectors. 

Considering both investment and operational emissions shows 

ignificant differences between the static and the dynamic assess- 

ent: dynamic LCA leads to lower environmental impacts in most 

ategories. While few categories are higher (e.g., ionizing radia- 

ion), many important categories (e.g., climate change) are up to 

8% lower in the dynamic case. 

Static LCA is a suitable choice as long as we only constrain 

perational emissions in the optimization. However, as there is a 

iscussion to consider infrastructure emissions in future optimiza- 

ion models to further enhance the benefit of LCA in energy sys- 

ems optimization and account for the increasing importance of 

ndirect emissions, we expect dynamic LCA to become more im- 

ortant in the future. In our study, qualitative system trends are 

ostly similar for static LCA and dynamic LCA. However, choosing 

ynamic LCA quantitatively influences the resulting environmental 

mpacts, reinforcing climate change reduction of the energy transi- 

ion. Future studies should thus integrate dynamic LCA, especially 

f they discuss trends in individual technologies or impact cate- 

ories, which are highly influenced by future energy systems, such 

s ionizing radiation. 
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