000904192 001__ 904192
000904192 005__ 20240712112850.0
000904192 0247_ $$2doi$$a10.1002/ente.202000955
000904192 0247_ $$2ISSN$$a2194-4288
000904192 0247_ $$2ISSN$$a2194-4296
000904192 0247_ $$2Handle$$a2128/30369
000904192 0247_ $$2altmetric$$aaltmetric:100477309
000904192 0247_ $$2WOS$$aWOS:000619181600001
000904192 037__ $$aFZJ-2021-05762
000904192 082__ $$a620
000904192 1001_ $$0P:(DE-HGF)0$$aRoskosch, Dennis$$b0$$eCorresponding author
000904192 245__ $$aBeyond Temperature Glide: The Compressor is Key to Realizing Benefits of Zeotropic Mixtures in Heat Pumps
000904192 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2021
000904192 3367_ $$2DRIVER$$aarticle
000904192 3367_ $$2DataCite$$aOutput Types/Journal article
000904192 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642749084_7161
000904192 3367_ $$2BibTeX$$aARTICLE
000904192 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904192 3367_ $$00$$2EndNote$$aJournal Article
000904192 520__ $$aZeotropic mixtures are widely discussed as alternative refrigerants for vapor-compression cooling appliances and heat pumps. Mixtures can increase efficiency due to their nonisothermal phase change. In theoretical studies, zeotropic mixtures show significant benefits for efficiency if the temperature glide of the mixture matches the temperature change in the heat transfer fluids. Such large benefits have never been observed in experiments. First, this article clarifies the gap between simulations and experiments. Second, it is shown how zeotropic mixtures could increase efficiency in real plants. The analysis is based on experimental results from a heat pump with three zeotropic mixtures and on theoretical studies that also include a physical compressor model. The compressor performance is shown to depend strongly on composition. Therefore, the compressor efficiency is the key parameter for large benefits of zeotropic mixtures beyond well-matching temperature glides. Based on these findings, a fluid database is screened for fluids with well-matching temperature glides and high compressor efficiencies, utilizing a physical compressor model. As a result of the screening, the zeotropic mixture R152a/R32 is identified. The corresponding simulations show that zeotropic mixtures can achieve large benefits in heat pump efficiency if the pure components have similar and high compressor efficiencies.
000904192 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000904192 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904192 7001_ $$0P:(DE-HGF)0$$aVenzik, Valerius$$b1
000904192 7001_ $$0P:(DE-HGF)0$$aSchilling, Johannes$$b2
000904192 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b3$$ufzj
000904192 7001_ $$0P:(DE-HGF)0$$aAtakan, Burak$$b4
000904192 773__ $$0PERI:(DE-600)2700412-0$$a10.1002/ente.202000955$$gVol. 9, no. 4, p. 2000955 -$$n4$$p2000955 -$$tEnergy technology$$v9$$x2194-4288$$y2021
000904192 8564_ $$uhttps://juser.fz-juelich.de/record/904192/files/Energy%20Tech%20-%202021%20-%20Roskosch%20-%20Beyond%20Temperature%20Glide%20The%20Compressor%20is%20Key%20to%20Realizing%20Benefits%20of%20Zeotropic%20Mixtures.pdf$$yOpenAccess
000904192 909CO $$ooai:juser.fz-juelich.de:904192$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904192 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000904192 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a ETH Zurich$$b0
000904192 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000904192 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000904192 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b3$$kRWTH
000904192 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b3$$kFZJ
000904192 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zurich$$b3
000904192 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000904192 9141_ $$y2021
000904192 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000904192 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000904192 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000904192 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904192 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY TECHNOL-GER : 2019$$d2021-01-27
000904192 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000904192 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000904192 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000904192 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000904192 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904192 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000904192 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000904192 920__ $$lyes
000904192 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000904192 9801_ $$aFullTexts
000904192 980__ $$ajournal
000904192 980__ $$aVDB
000904192 980__ $$aUNRESTRICTED
000904192 980__ $$aI:(DE-Juel1)IEK-10-20170217
000904192 981__ $$aI:(DE-Juel1)ICE-1-20170217