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Lithium-ion batteries (LIBs) are the currently most advanced electrochemical energy storage
technology due to a favorable balance of performance and cost properties. Driven by forecasted
growth of the electric vehicles market, the cell production capacity for this technology is
continuously being scaled up. However, the demand for better performance, particularly higher
energy densities and/or lower costs, has triggered research on post-lithium-ion battery technologies
such as solid-state lithium-metal, lithium-sulfur, and lithium-air batteries as well as post-lithium
technologies such as sodium-ion. Currently, these technologies are being intensively studied with
regard to material chemistry and cell design. This article reviews and expands the current knowledge
in this field. Starting with a market outlook and an analysis of technological differences, we discuss
manufacturing processes of those technologies. Anode production, cathode production, cell
assembly, and conditioning for each technology are described. Then, the manufacturing
compatibility of each technology with the lithium-ion production infrastructure is evaluated and
implications on process costs are discussed.

Rechargeable batteries have a long history of technology development, starting with the expansion of
lead-acid technology to commercial scale around the year 1860. Since then, several secondary battery
technologies have been commercialized including manganese dioxide-zinc, nickel-cadmium, nickel-



metal hydride and lithium-ion batteries. The commercialization path has resulted in enormous
performance improvements. Lead-acid batteries (LEAs), which today still dominate the automotive
starter sector can achieve gravimetric energy densities of 20 to 40 Wh kg?, while the first-generation
of LIBs introduced in 1991 had already reached 80 Wh kg 2. At the early stage of LIB technology,
achievements in energy density were accompanied by cost drawbacks. Since then, the cost of LIB cells
has decreased to less than 150 USS kWh* 3 and energy density has further increased to more than
250 Wh kg, making LIBs the prevalent high energy density technology.

Driven by this technological evolution, various industries began using LIBs for energy storage. Today,
LIB technology is already in widespread use in mobile electronic devices (e.g., phones, tablets and
laptops), electric bicycles, e-scooters, power & gardening tools and forklifts®. In addition, it is likely that
LIB-powered electric engines will (partially) displace the combustion engine as the leading propulsion
technology in the automotive sector in the mid-term and will support fuel cell drive trains in the future.
In 2019, the LIB battery manufacturing market accounted for >160 GWh year™ of a total rechargeable
battery market of >600 GWh year (Fig. 1). Especially driven by the increasing market share and the
high energy content per electric vehicle application (on average 10 kWh vehicle? for hybrids and
68 kWh vehicle™ for full battery electric vehicles®) this capacity is forecasted to increase to 1,500 GWh
year™ by 2030 (Fig. 1). Driven by this increase in capacity, billions of dollars will be invested in the
manufacturing infrastructure (see Table 1) for the respective state-of-the art battery cell technology
(currently LIB).

Increasing demand has led to the set-up of numerous new LIB cell factories. However, due to current
requirements especially for further cost reduction and increased energy density, alternative battery
technologies beyond the LIB are being intensively discussed. Based on their theoretical energy
contents, several, so-called post-lithium-ion-batteries (PLIBs) promise higher gravimetric and
volumetric energy densities compared to LIBs (Fig. 1), for some technologies even being forecasted to
exceed 1,200 Wh kg™ and 800 Wh L. In addition, they promise cost advantages®®, which is in many
cases rationalized with lower raw material costs of the cell components (e.g., sodium?®, sulphur® and
oxygen) or optimized cell component concepts (e.g., anode-free batteries'®!!). Table 2 provides an
overview of the key (dis-)advantages as well as technical specifications of the discussed battery
technologies, while Figure 2 shows the corresponding active material configurations as well as stacking
of cell components. While many PLIB technologies are being produced at lab or pilot scale, currently
no studies on their series manufacturing exists.

This article examines industrial-scale manufacturing of LIBs and four commonly discussed PLIB
technologies: sodium-ion batteries (SIBs) and the lithium-metal based batteries, namely lithium-sulfur
batteries (LSBs), solid-state batteries (SSBs), and lithium-air batteries (LABs). These PLIB technologies
were selected for the following reasons. SIBs are being widely regarded as an alternative, drop-in
technology for LIBs and might gain importance, in case limited resources, such as limited lithium supply
should become an issue in the future. The three Li-metal based PLIB technologies promise high energy
contents and are being anticipated on the battery technology roadmaps worldwide. LSBs could not yet
been commercialized successfully at a large scale, despite the steady increase of their specific energy
(currently >400 Wh/kgcen) through optimization of electrode architecture and minimizing electrolyte
excess. They are thus likely to be constrained to specialized applications such as aviation. In recent
years, the highest hopes to advance beyond LIBs have been associated with SSBs, whose major
advantages would lie in higher energy contents (>350 Wh/kgcei) through the implementation of lithium
metal and enhanced safety by replacing the flammable liquid electrolyte with a non-flammable solid
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electrolyte. In spite of intense efforts by many researchers, all reported SSBs regardless of whether
they use a polymer, an inorganic (sulfidic or oxidic) or a hybrid electrolyte version of the three, to date
still fall short of electrochemical performance (energy, power, life) in comparison to LIBs'2. However,
from a manufacturing perspective, polymer-based SSBs can be industrialized in a similar way like
conventional LIBs®, whereas the industrialization of sulfidic and oxidic SSBs is much more challenging
and requires new manufacturing machinery, competencies and environments and is thus focused
within this article. LABs are associated with the most difficult technical challenges, including pore
clogging of the air electrode during operation, their potentially attainable energy content is also most
appealing (currently depending on the calculation basis >1.200 Wh/kgei)!* and have thus been
included in this study. Other alternative battery chemistries (e.g. aqueous LIBs) were not included in
this work, as they presently do not offer sufficient advantages (i.e., energy density, raw material
availability, life) over current batteries and thus are not expected to qualify for a broad market.

In the following, we first compare the battery technologies, focusing not only on their strengths and
weaknesses with regard to performance and cost, but also on the used materials, cell designs, as these
have considerable impact on the cell manufacturing processes. Finally, we describe the manufacturing
steps for each technology, evaluate the implication of a technology leap for existing lithium-ion cell
production facilities, and discuss the implications on processing costs.

Architecture of selected rechargeable battery technologies

In this section, materials and cell designs of the current LIB technology as well as of four emerging
battery technologies are briefly described. PLIBs are discussed in reference to the specifications of LIB
technology, which currently represents the state-of-the-art. While LIBs and SIBs rely on intercalation
chemistry, LSBs, SSBs and LABs involve a shape-changing lithium metal anode, which is
deposited/stripped during each charge/discharge cycle. With regard to raw material costs per kg
(material level) and raw material availability, individual components of SIBs show advantages over LIBs,
which however do not result in lower costs per energy (USS kWh?) at cell level>. While PLIB
technologies such as LSBs or LABs involve potentially low-cost cathodes, their lithium metal negative
electrode, which often involves a large lithium excess, might significantly increase raw material and
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processing costs. Estimated cost for unprocessed lithium metal (ingot) amounts to 50-130 USS kg* 4,
whereas cost of battery-grade lithium carbonate or hydroxide ranges from 8-11 USS$ kg 4.

Lithium-ion battery technology: Major constituents of a LIB are the cathode (positive electrode)*® and
the anode (negative electrode)'® as well as the separator and the electrolyte. Layered (transition) metal
oxides (LiMO, with M = Ni, Mn, Co and/or Al), are the most widely used class of positive active
materials'’, while artificial and natural graphites are mostly used as negative active
materials!*1819, Key inactive components include aprotic liquid electrolytes with lithium salt, thin
microporous, polyolefin-based separator films (~20 um)? and sheets of aluminium (~12 um) and

copper (~8 um) are used as current collectors for cathode and anode.

Sodium-ion battery technology: SIBs have the same fundamental working principle as LIBs, but rely
on sodium rather than lithium as mobile cations. Unlike lithium, sodium does not electrochemically
alloy with aluminium at room temperature. Thus, the copper current collector or the negative
electrode can be replaced by cheaper aluminium. Hard carbon is typically used as anode active material
instead of graphite, as crystalline graphite has poor storage capabilities for sodium ions?\?2,
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Electrolytes and separators as well as the positive current collectors are similar to LIBs, except for using
sodium salts in the electrolyte.

Lithium-sulfur battery technology: LSBs use nanostructured sulfur/carbon composites with high
amounts of conductive carbon as positive active material, while lithium metal is used as negative active
material. Since their operation relies on soluble polysulfide species within the electrolyte?®, high
amounts of electrolyte are necessary, which reduce the practically attainable energy density.”**

Solid-state lithium metal battery technology: High-energy SSBs use a lithium metal anode and a
composite cathode, which consists of the cathode active material, (optionally) a conductive additive,
and a certain mass/volume fraction of a solid electrolyte (SE)2. Ideally, the SE simultaneously acts as
an ionic conductor and electronic insulator?®, which enables the SE to also act as separator film2%27,
Ideal SEs can suppress lithium metal dendrite formation and growth. Various inorganic ceramics or
lithium salts in organic polymers are suitable for the SE. Inorganic ceramics can be further
differentiated into sulfides and oxides'®?>?¢, which are both in the focus of the following section on
manufacturing.

Lithium-air battery technology: The architecture of LABs differs fundamentally from all previously
discussed battery types, as LABs involve the use of oxygen as a gaseous positive active material, which
ideally could directly be taken from atmosphere!*?°. LABs use an oxygen- or air-permeable carbon
cathode with a porosity of around 80%. To ensure sufficient oxygen supply, cathode grids are used
as collectors. Lithium metal is used as negative active material. Both aqueous and non-aqueous
electrolyte formulations may be utilized, with the latter preferred due to their better stability against
lithium metal®®3!, Major technical challenges in development of LABs exist. Due to the presence of
other atmospheric gases in air (i.e., N2, CO; or H,0), unwanted chemical products such as LizN, Li>COs;
or LiOH may form in the cathode?, which negatively affect the attainable cycle life323%, A promising
approach to improve the cycling stability of LABs is the usage of an oxygen-selective membrane, which
suppresses side reactions®°. Compared to the previously described battery technologies, a new cell-
stacking architecture is needed to ensure a sufficient supply of oxygen to the cathode, which could
reduce cost and result in energy-density advantages at the system level?®. Before the LAB technology
can be scaled up, it is necessary to resolve fundamental issues regarding cell design and materials
chemistry.

Manufacturing of selected rechargeable batteries technologies

Research on manufacturing of battery cells is gaining momentum. Most studies focus on the lithium-
ion technology with the target to optimize process parameters. To achieve these improvements, a
detailed understanding of the numerous consecutive and interacting process steps is mandatory3>3¢,
However, beside the optimization of LIB manufacturing, the manufacturing of PLIBs must be focused
within research activities, as it will require new process technologies, new manufacturing
environments and new manufacturing competencies. Consequently, this section describes the
manufacturing of LIB technology as well as selected PLIB technologies as illustrated in Figure 3,
highlighting the differences of the manufacturing routes. For that, process steps are divided into three
superordinate main processes: electrode production (anode and cathode), cell production, and cell
conditioning. In addition, for SSBs, solid electrolyte production is discussed in detail, as in contrary to
their liquid counterparts, parts of the SE are mixed with the cathode active material slurry to achieve
ionic conductivity and SE is integrated as additional layers within the cell stack. Thus, electrolyte
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production within SSBs requires a significantly higher processing effort compared to technologies with
liquid electrolyte.

Anode production: For graphite and hard carbon negative electrodes used in LIBs and SIBs, in general
the same production process is followed. First, the active material (graphite or hard carbon), binder
(e.g., poly(vinylidene difluoride) (PVdF)), conductive additive (e.g., carbon black) and processing
solvent (e.g., NMP, water), are typically mixed batch-wise (e.g., by planetary mixer) or continuously
(e.g., by screw extruder®?®) to produce the anode active material slurry>'#394°, Where optimal
homogeneity of the slurry is crucial to achieve desired cell performance (especially rate capability and
electrode conductivity)®!, from a processing perspective, optimal slurry-viscosity is most relevant. In
general, thin slurries allow for faster processing in the consecutive coating process but induce coating
thickness variations and higher cost for solvents and subsequent drying*?. To achieve optimal slurry
properties within minimum processing time, various suspension strategies are available which
sometimes use an upstream dry mixing procedure (e.g., by low-intensity dry homogenization) to blend
active material, conductive additives and binder (optionally)®>. Consecutively, thin metal carrier foils
(Cu ~8um; Al 12 um)* are coated continuously or intermittent on both sides (e.g., by slot-die coating)
and dried (e.g., by convection or infrared) to solidify the slurry by evaporating the solvent. Where
currently typical coating speeds range between 25 and 50 m min**®, future speeds of up to 100 m min-
L are targeted. To materialize this higher coating speed from a technical perspective, the bead pressure,
the low-flow limit and its associated parameters must be controlled especially to avoid film break-ups
and to ensure film uniformity as a basis to not deteriorate scrap rate and/or cell performance*¢,
Further, dryer processing capacity must be improved to similar extent. Therefore, beside the strategy
of increasing dryer length, the usage of infrared instead of convection dryers and optimized drying
protocols are promising approaches**>. To reduce porosity, the coating is then compressed by
calendering in the next step. When the working width of the coater (up to 1.5 m) exceeds the width of
a desired single anode sheet, anodes are slit to the desired width (e.g., by roll-knife or laser). Finally,
the cathodes are dried (e.g., batchwise under vacuum or continuously under infrared) prior transfer to
a dry room*“8% The described liquid suspension and web coating-based anode production for SIBs
and LIBs represents the current state-of-the-art process. With regard to the future, various solvent
free concepts are intensively researched as they promise cost advantages due to the elimination of the
drying procedure (see Fig. 4).

Lithium metal anodes are typically used in SSBs, LSBs and LABs?>3°. While lithium compounds such as
Li2COs5 or LiOH are sufficient for cathode active material production of LIBs and SSBs, lithium anode
production requires metallic lithium. To produce metallic lithium, purification and reduction by energy-
intense electrolysis is necessary®®. As metallic lithium is highly reactive with components of ambient
air (oxygen, nitrogen, carbon dioxide, moisture)®!, it must be processed in inert gas atmosphere,
typically argon?®.

As illustrated in ure 5, a typical lithium metal anode production comprises the following steps: First,
lithium metal is extruded to form the ductile material into foil shape. Second, high-intensity
calendering further reduces foil thickness. The high-intensity calendering process for lithium metal
differs from conventional calendering of graphite anode. Conventional calendering reduces material
thickness by reducing its porosity. As metallic lithium is non-porous and significantly lower thicknesses
of 10 to 20 um are targeted (compared to 50 to 150 um in conventional anodes), the number of
operations and typical line loads of 500 N mm™ used for calendering graphite anodes® are significantly
exceeded. Further, the adhesive properties of lithium®! must be controlled during calendering to avoid
scrap. Third, the lithium foil is laminated on both sides of the current collector foil'°. Prior transfer of
the lithium metal foil out of the protective argon atmosphere, its surface must be passivated* to
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conduct consecutive manufacturing steps under dry room conditions. For passivation, multiple
approaches are available: gas treatment, coating layer of polyethylene wax or surface fluorination®2.
This passivation is necessary from a manufacturing perspective. Nevertheless, the passivation layer
can in addition act protectively to suppress lithium metal dendrite formation/growth, and to suppress
reaction of lithium metal with electrolyte which would result in reduced cell performance due to
electronic conductivity and/or decompensation®?>. However, since protection concepts relying on
additional layers (using e.g., polymers , ceramics , inorganic-organic composites or porous carbons)>
cause drawbacks in terms of energy density and costs, strategies to produce this protective interlayer
in situ via conversion reaction® or its complete omission by usage of materials which are mutually
stable seem to be more advantageous. For example, within SSBs, this protective interlayer can be
omitted in case of typically garnet structured oxidic SE, which are stable against lithium-metal and do
not show any reaction in cyclovoltammograms up to 8V&>°. However, typical sulfidic SEs (e.g., LiGePS
or LiSiSnPS) are not stable against lithium metal, as they include transition metal ions like Ge or Sn and
thus, an interlayer protection is mandatory®°°>. Beside the approach of finding an electrolyte that is
stable against lithium metal, the usage of lithium alloys (e.g. Al, Ga, In, Sn, or Sb) as active material are
discussed intensively since insertion of lithium into metal lowers electrolyte reduction while allowing
lithium-ions to transfer into the electrode material®®. After passivation, the mother coil is laser-slit to
single electrodes or daughter coils. Mechanical roll-knife slitting, which is the established process for
LIBs, is not suitable, due to the adhesive properties of lithium. Currently, lithium foil thicknesses of <15
um cannot be produced at competitive costs. Thus, optimized processing techniques such as melt
processing or vapour deposition are being discussed. As an alternative approach, so-called ‘anode-
free’ concepts are considered, which involve lithium plating onto a pristine lithium-free current
collector upon initial charge!®'*>’, rendering the elaborate production and processing of lithium metal
foil unnecessary. To put this concept into practice, the necessary lithium must be provided by a lithium-
containing cathode material.

Cathode production: Cathode production for LIBs, SIBs, and LSBs involves basically the same process
steps as graphite and hard carbon anode production.

SSB composite cathodes are produced by using (1) a current collector foil, (2) an active material, (3) an
SE and (4) a conductive additive. First, for the production of sulfidic and oxidic SSBs, active material
slurry and SE slurry are mixed separately (e.g., by planetary batch mixer or permanent extruder).
Second, as ionic conductivity within a battery cell is achieved by sufficiently connecting active material
with electrolyte particles, part of the SE must be mixed with active material slurry (~30 vol% SE®'7).
Accordingly, ionic conductivity within SSBs can be characterized by slurry homogeneity, which makes
the composite mixing process step crucial for cell performance. Third, the composite slurry is coated
(e.g., by slot-die-coating) onto an aluminium current collector foil. After coating, the consecutive
process steps differ for cathodes with oxide- and sulfide-based SEs, mainly because the more brittle
oxidic SEs (e.g., LLZO, Li;LasZr,01,)*° require production processes with lower mechanical stress.

Within sulfidic SSB production, after composite coating, the pure sulfidic electrolyte slurry is coated
(e.g., by slot-die-coating) on top of the composite layer forming a cathode-electrolyte-assembly.
Thereafter (and sometimes also before), the slurries are dried (e.g., by convection, infrared, or
vacuum). After this step, the cathodes are calendered and slit. This might require advanced
instrumentation and/or multiple calendering operations. Finally, a slitting process step is conducted,
which is comparable to those used for LIB production and can be executed with a role-knife procedure.
With regard to the production environment, cathode production of sulfidic SSBs must be conducted in



a dry environment (<100 ppm of H,0%) or inert gas atmosphere, as the currently most promising class
of sulfidic SEs is prone to ambient moisture, generating harmful H,S%73,

While the described liquid suspension coating and calendering procedure is suitable to achieve
targeted interfacial contact and porosity within the ductile sulfidic electrolyte, they are not sufficient
to process the hard and brittle oxidic SEs®. Therefore, within oxidic SSB production, after composite
slurry coating (e.g., by slot-die-coating), a low temperature pre-sintering step is conducted by which
the particles of the composite cathode are connected and the intergrain ionic resistance is reduced®.
In general, high temperature sintering (around 1000 °C) is not applicable as it leads to reaction of SE
and active material resulting in disadvantageous products. For example, the typical active material
LNMO and the typical SE LLZ decompose at 600 °C 85>, The sintering operations are ideally conducted
in large-scale manufacturing by using efficient permanently operational sintering ovens. After
sintering, cathode sheets of the oxidic SSB must be processed in dry room or inert gas atmosphere, as
oxidic SEs would react with humid air and form Li,COs on the surface, resulting in decreased ionic
conductivity®®. Thereafter the composite cathode is slit and laser-cut into single sheets. In order to
form the cathode-electrolyte-assembly, concepts exist to either produce the SE layer separately or to
apply it directly onto the composite cathode. Within the first concept, the solid electrolyte layer is
formed by coating the solid electrolyte slurry (solid electrolyte, binder, additives, solvent) on a carrier
tape and the solvent is evaporated. Afterwards the sheets are cut to single sheets, which must be
conducted by laser, as mechanical cutting processes are not suitable for the brittle oxidic SE layer.
Thereafter a high temperature sintering operation at over 1000 °C for several hours is conducted?.
Finally, the solid electrolyte is laminated onto the composite cathode layer and a further low
temperature sintering operation is conducted. While this process chain seems feasible for small format
layers (e.g., 2 x 2 cm?), the upscaling to larger formats within industrial processes is a key challenge
within commercialization of oxidic SSBs. Therefore, alternative concepts are discussed. Herein aerosol
deposition is a potential technology in which solid electrolyte powder is applied directly to the
composite cathode layer by using a carrier gas and is then compounded in a tempering step (e.g.,
600°C)®”.Using this concept would enable the production of thinner electrolyte layers. Further, various
process steps including time and resource-consuming sintering could be avoided. Nevertheless, the
technology is in an early stage and especially deposition rates, which are currently limited to 10 mm?3
min?, must be improved e.g. by using multi-nozzle systems with broad nozzles for competitive
industrial application®.

Cathode production of LABs is crucial, as the structure of the cathode affects the overall battery
performance to a significant extend, due to its impact on cathode material utilization, the morphology
of the discharge products, the oxygen permeability, the ionic transfer and the electric conductivity®®.
High-performance LAB cathodes have a durable porous structure containing optimal pores (size and
distribution) to store the discharge product and to provide sufficient oxygen supply’®’. Beside an
optimal pore structure, it is crucial to avoid moisture uptake by the high-surface-area carbon black
during production, as moisture blocks the deposition of the Li,O discharge product, thereby reducing
capacity. Minimum moisture can be reached by solvent-free production in a dry atmosphere, which is
currently being intensively studied for LIBs as well’>73, In solvent-free cathode production, the carbon,
binder, and pore builder are first mixed to a dry powder (e.g., by double blade mill’4). While with wet
coating, porosity is mainly generated by solvent evaporation, dry coating requires a dedicated pore
builder (e.g., ammonium bicarbonate). Second, the dry powder is electrostatically charged and sprayed
on one side of the grounded current collector by powder guns’?7>. Third, the cathode is compressed,
and the binder is thermally activated by a hot-rolling process’? before the cathodes are slit.



For solvent-free electrode production, there are, besides the described electrostatic spraying, well-
known alternatives such as vapour deposition (e.g., by pulsed-laser or sputtering’®’’) or reactive
mixing and rolling. Vapour deposition has disadvantages compared to electrostatic spraying due to
higher working temperatures and slower deposition rates’®, which results in higher costs for large scale
manufacturing. Reactive mixing and rolling are a promising alternative for technologies that use
structured collector foils (e.g., LABs), which is mandatory for attachment of active material and
collector foil in this production concept.

Cell production:

Cell production of LIBs and SIBs entails the same process steps. However, the specific process depends
on the choice of cell design: cylindrical cell, prismatic cell or pouch cell. Generally, three prevailing
production techniques exist to build the anode-separator-cathode stack: winding, single sheet stacking
and z-folding’®. During winding, anodes, cathodes and separators are provided as endless bands and
wrapped together®. This process is highly productive, precise and typically used for cylindrical cells
and prismatic cells*>8!, However, the bending stress of the electrodes, which increases by electrode
thickness, limits the cell size and energy density3>°, Within single sheet stacking, anodes, cathodes,
and separators are cut into single sheets and stacked separately®’. By this technique the mechanical
load on the single electrode sheets is uniform and no bending stress occurs, which allows thicker
electrodes (>100 pum), resulting in higher energy densities®. As the sheets are stacked separately,
single sheet stacking is less productive than winding and there is an increased risk of short circuits, due
to physical contact of slipped electrodes®. During z-folding, which is a state-of-the-art process for
pouch cells produced at large scale, anodes and cathodes are first cut into single sheets, typically using
a stamping process®2. Second, the separator is fed as an endless, folded band, and the anodes and
cathodes are alternately inserted into the interstitial space®. By this technique, electrode thicknesses
are not limited by bending stress and the endless separator hinders short circuits by connection of two
electrodes®.

After conducting one of this process alternatives, internal contacts between anode, cathode, and
separator assembly are typically created by ultrasonic welding®>®. Subsequently, the assembly is
inserted into the housing (e.g., aluminium housing for cylindrical and prismatic cells or aluminium-
polymer foils for pouch cells). After insertion, the cell is filled with liquid electrolyte under weak
vacuum (<300 mbar below ambient pressure) and sealed®#°, while alternating pressure conditions can
reduce the filling time of the liquid electrolyte. The filling process for LIBs, SIBs, LSBs, and LABs is
executed using identical technology, but the amount of electrolyte differs (i.e., electrolyte to active
material ratio) due to differences in amount, porosity, and reaction pathways of the active materials.

The major difference between LIBs and SIBs compared to LSBs, SSBs and LABs lies in the use of a lithium
metal anode for the latter. Due to adhesive properties of lithium®?, laser welding is mandatory for
cutting the roll to single sheets. Novel stacking and contacting processes are needed to handle the
thin, sticky, and reactive lithium metal sheet. For stacking, the vacuum grippers currently used (for
LIBs) to pick and place the electrodes within single sheet stacking and z-folding®? are not suitable for
LSBs, SSBs, and LABs, due to the high risk of damaging the lithium metal foil. Using optimized versions
of existing insertion process technologies®® is more promising for lithium metal foil stacking. However,
currently reported stacking speeds of more than 200 sheets per minute®” will only be hard to reach
due to lack of mechanical robustness and the sticky and adhesive nature of the lithium metal sheet.
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For consecutive contacting, laser welding is mandatory. Ultrasonic welding is not usable as it relies on
mechanical vibrational energy®®, which would damage the thin foil.

In SSBs, no separator foil is used, and the ceramic SEs (sulfidic and oxidic) tend to break upon
compressive stress, which means z-folding and winding are not suitable®®. Thus, single sheet stacking
is mandatory to build the anode, cathode, and SE stack. The damage-free handling of the adhesive thin
lithium metal foil will be challenging within this process step®. For sulfidic SSBs, the interface between
SE layer and anode needs to be contacted by mechanical pressure after stacking or contacting®°,
Compared to LIBs, this new process step is necessary as the SE and the anode must be closely contacted
to ensure charge transfer. Therefore, high-quality pressing with optimal pressure, cycle time, and
temperature is mandatory. When pressing the stack, there is the risk that individual layers misalign,
potentially causing an internal short circuit and possible thermal runaway. To avoid this, the cathode-
electrolyte sheet is typically geometrically oversized in SSBs. On the contrary, in LIBs, separator and
anode are area-oversized to avoid short circuits and/or lithium deposition. Due to the use of lithium
metal at the anode and the availability of electrolyte, the cell is activated and charged after stacking®®.
As the cell is not yet surrounded by housing in this process step, there is a high risk for short circuits,
which must be addressed by safety precautions within the production process. After contacting the
cell in a next step, it is inserted into a housing and completely closed. The process step filling can be
omitted, as electrolyte is already present.

As LABs require a cell design, which allows an external supply of oxygen at the cathode and oxygen
protection of the anode, cell assembly differs from that of LIBs, SIBs, LSBs, and SSBs. The stacks consist
of an anode, separator, and cathode, as well as a gas diffusion layer (GDL) for oxygen distribution33°,
Similar to the z-folding used in LIBs, the separator is fed endlessly and folded in zigzag shape. On the
one side, lithium metal anodes and, on the other side, cathodes with GDL between them are inserted.
Subsequently, the full stack is inserted in a housing that enables oxygen supply at the cathode side and
prevents oxygen from entering the anode side. Consecutively, the housing is filled with electrolyte and
closed by welding (e.g., laser or ultrasonic). However, due to these fundamental design differences, it
must be assumed that the assembly of LABs will require completely new manufacturing machines.

Cell conditioning: Cell conditioning for LIBs, SIBs, LSBs and LABs begins with the formation process,
during which the cell is charged and discharged several times under specific conditions to form the
solid electrolyte interphase (SEI)°>°2, which protects anode from adverse ongoing parasitic reactions
with electrolyte® . Gas generated during SEl formation within the cell must be removed prior sealing.
Due to the optimization of the formation protocols, including specific current rates, number of
charging cycles, resting times and temperature profiles, nowadays it seems to feasible to conduct this
procedure for LIBs within less than 20 hours®”%8. During this procedure, LIBs and SIBs start with a
charging step, as all lithium is stored within the cathode in the assembled state. In the case of LSBs and
LABs, which are assembled in their charged state, all available lithium is initially located at the anode
side. Hence, the already charged LSBs and LABs are activated by filling with electrolyte and the SEI
formation starts instantly due to high reactivity of lithium metal. However, a controlled formation
procedure is nevertheless conducted to optimize SEI formation.

For SSBs (lithium metal based), a typical formation process is not necessary if optimal SE are used that
are stable against lithium metal®. In case this concept cannot be materialized, a protective interlayer
is necessary. If a concept is targeted to produce this interlayer in situ, a formation process is necessary.



It is crucial to suppress gas generation during this procedure, which would negatively affect the
compressed SE and lithium metal interface®?.

After formation, cells are aged and quality control is conducted. Therefore, the cells are stored for two
to three weeks and the cell voltage is permanently measured to detect production errors and short
circuits that could cause voltage l0ss3>100:101,

Implications for process costs

Process steps as well as the technologies, rates and environments for manufacturing of the described
battery technologies differ vastly. These differences have significant implications on processing costs
and must thus be considered to holistically evaluate competitiveness of these technologies. In the
following, the main effects to be considered are listed. LABs are excluded from this analysis, as their
technological maturity is currently too low for a reliable large-scale oriented process cost assessment.

With regard to SIBs, process steps and manufacturing technologies are identical to those of LIBs.
Nevertheless, due to lower energy densities resulting from lower cell voltage and lower charge
densities of anode active material >, more cells (assuming identical geometry) must be manufactured
for the same amount of energy (in kWh) stored. This would increase process costs, as more machines
are required, which must be purchased, installed, and operated. Hence, a process cost increase of
roughly 15% has been reported®. As additional costs, resulting from these increased material
guantities, occur along the whole battery value chain (battery material and component production,
cell production, module production, and system production), there is currently an uncertainty whether
the lower raw material cost of battery grade sodium salts (e.g., Na,COs, cost 0.5 USS kg*°) compared
to battery grade lithium (Li,COs costs 11 USS kg 192) can be transformed into lower battery costs.

Regarding LSBs, SSBs and LABs, fewer cells (assuming identical geometry) must be manufactured
compared to LIBs for the same amount of energy (in kWh) stored, due to a more optimal parameter
set of cell voltage and active material specifications. Nevertheless, compared to LIBs, there are new
process specifications that must be considered. For all technologies using a lithium metal foil, anode
process cost will be more crucial. Estimated process costs in the range of 300-400 USS kg have been
previously reported.*

As described, implications by the use of lithium metal are not only limited to its initial production.
Additional effects occur within the singling to sheets (slitting and cutting) and the assembly of the
sheets within the process step stacking. For singling, machines relying on mechanical force can, in
contrary to LIBs, not be used and must thus be replaced by laser machines. While laser cutting promises
advantages in cutting quality and maintenance, there are drawbacks in total costs resulting from
reduced machine capacities and/or increased machine costs (see Table 3).

With regard to the process step stacking, highly automated processes have been implemented for LIBs,
reaching pick and place speeds more than 200 sheets min™ . However, such a high automation rate
will be hard to exceed within a lithium metal stacking operation. As stacking is already a cost driver
within LIB production (process cost share 11-22%1%), the process development for lithium metal foil
stacking can be assumed to be of crucial relevance from a cost perspective.

On the contrary, anode-free concepts, in which the lithium metal anode is generated in situ, promise
process cost advantages, as active material-related anode production steps, which cause process costs
of 12-18% even within LIB production!®®, could be completely omitted.
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For SSBs, in addition to the effects resulting from the use of lithium metal anode, further process
differences compared to LIBs must be considered from a cost perspective: The production process for
both sulfidic and oxidic SSBs require new process steps, while compared to LIB, other steps can be
omitted. Due to the use of a composite cathode, an additional mixing step is necessary. This
requirement is crucial from a cost perspective, as the single cathode mixing LIB production already
reaches a process cost share of 6-12% %, In addition, sulfidic SSBs so far require the additional process
step pressing. Estimation of accurate costs for this process step is difficult as such machinery has not
yet been developed. However, due to necessary operating accuracy, high automation level, and
novelty, its development will require a high effort, which will be allocated in battery costs. Oxidic SSBs
require the additional process steps sintering, aerosol deposition, and tempering. Sintering requires
the use of permanently operating ovens, which are widely commercially available. When looking at
the specifications of these machines, the cost relevance of this new process step becomes obvious:
Such ovens reach operating widths of >2 meters, operating lengths of >100 meters, consume several
thousand kilowatt-hours of energy (normally gas) and require investments of more than 10 million USS
per machine. Likewise, also tempering significantly contributes to processing costs'®, although it can
be conducted at lower temperatures and with reduced cycle times due to the usage of aerosol
deposition®’.

In contrast to this crucial process cost effects within SSB production, there are some cost-driving
process steps related to LIB that can be completely omitted, namely the liquid electrolyte filling process

the formation process step, which account for 5-10% and 8-25% of LIB process costs, respectively'®.

Beside effects resulting from processual changes, requirements concerning manufacturing
environments influence costs. Hereby, dry room environments are used when reduced moisture
contents in atmosphere are required (<100 ppm of H,0)%. Inert gas atmospheres (such as argon)* are
used to hinder reaction of battery components with components of ambient air. Within LIB
manufacturing, process steps associated with cell production (25-31% of total floor space) are
conducted within dry room atmosphere, where inert gas atmosphere is not required. With regard to
PLIBs, additional process steps associated with lithium metal production, composite cathode
production (sulfidic SSBs) and LAB cathode production must be additionally conducted within dry room
or even inert gas atmosphere (see Fig. 3). This will cause additional costs due to the investments in
infrastructure and its operation (see Table 4). Cost drivers related to dry room environment are
especially the purchase and operation of electricity consuming coolers and blowers®. Within inert gas
atmosphere, the investments in the housings and the gas purifiers are significant. Compensation of
inert gas losses (~0.05 vol%) must be considered during operation®®.

Conclusion and future perspective

Based on the results of Fig. 3, it can be derived that the manufacturing process steps of SIBs are
basically identical to those of LIBs, while the process steps of the alternative technologies are to a
certain extent similar to those of LIBs. Thus, for the industrialization especially of LSBs, SSBs and LABs,
intensive research and development activities focussing on the build-up of new manufacturing
competencies and the development of new machinery are necessary. In addition, challenges
concerning material composition and cell design must be addressed as PLIBs must compete
comprehensively in terms of all key performance parameters (energy, power, safety, life and cost) with
the currently dominant LIB to become an alternative in the mass market. Considering the technical
challenges PLIBs are facing, it remains to be seen, whether and when one of the discussed, or another
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new battery technology is going to contend the currently dominant LIB. However, with view on the

currently scheduled production capacities for LIBs, a challenging battery cell technology would need
to exhibit significant advantages to justify the billion-dollar investments in new machinery.
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Fig. 1 | Practical technology-specific volumetric and gravimetric energy densities and development of the rechargeable
battery market size over time. a, Practical volumetric and gravimetric energy densities per technology at cell level: current
high-energy LIB cell as minimum and advanced LIB configuration (the latter e.g., using Si-based anode) as maximum value;
prototype cell data for SIB, LSB, SSB and LAB with minimum and maximum values given for Li-metal based systems®>12-
14,105,106 b, Development of the rechargeable battery market from 2005 to 2030. In 2005, market was dominated by the LEA
technology with a production capacity (in GWh) share of more than 80%. This dominant position of LEAs can still be observed
in mitigated form with share of more than 60% in 2020. By 2030 LIB becomes the dominant technology with a production
capacity share of more than 50%*. The past (2005-2015) and prognosis (beyond 2020) data are taken from ref.4.
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Fig. 2 | Schematic electrode stack design for LIBs, SIBs, LSBs, SSBs and LABs with associated active materials and areal capacity
ranges typically used. The orange/grey colour of the current collector correspond to copper and aluminium foil, respectively.
The given thicknesses of electrodes and inactive components may not be to scale, as they depend on the chosen cell layout.
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Fig. 3 | Battery cell production chain for selected battery technologies. a, SIB and LIB production process steps are basically
identical. b-e, Anode production steps for LSBs, SSBs, and LABs represent the production of thin lithium-metal foils. Due to
properties of the used metallic lithium, anode production must be conducted in inert gas or dry room atmosphere and laser
application is mandatory for the process steps cutting, slitting and contacting. Further, for the process step stacking, process
technologies must be developed to enable fast handling of ultrathin, sticky and adhesive anode foils. c, for sulfidic SSB cathode
production, additional mixing and coating operation is necessary to build the composite cathode layer. Further, cathode
production must be conducted within dry room atmosphere to avoid reaction of sulfidic electrolyte with ambient air and
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moisture. Within cell production, the process step pressing is necessary, to contact SE and anode. d, For the production of
oxidic SSBs, sintering and tempering operations are necessary due to the brittleness of oxidic SEs. After sintering, production
steps must be conducted in dry room atmosphere to prevent degradation of the SE. c-d, For sulfidic and oxidic SSBs, the process
steps filling and formation can be omitted, as the electrolyte is already present and the SE is ideally sufficiently stable against
lithium. e, For LABs, within cathode production, solvent free production steps which consists of the process steps dry mixing
and electrostatic spraying (conducted within dry room atmosphere) are mandatory to avoid moisture, which would reduce
the storage capacity of the used carbon at the cathode. Within cell production, the additional GDL within the cell stack and
the required cell design, that enables oxygen supply at the cathode and prevents oxygen at the anode side, drives significant
adaptions of process steps stacking, contacting and enclosing.
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Fig. 4 | Prospective concepts for solvent-free electrode production. a, Pulverised active material is electrostatically charged
and sprayed by a powder gun onto a current collector foil. b, Active material substrate is transformed from solid state to gas
phase by energy insertion (e.g., by sputtering or pulsed-laser) and is thus deposited on the current collector foil. ¢, Pulverised
active material is directly spread on collector foil and inserted to calendaring process. Therefore, 3-D structured current
collector foil (e.g., grid) is mandatory.
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Fig. 5 | Process concepts for lithium metal anode production. a, Lithium metal is extruded into foil shape and compressed
by several calendering operations to reduce thickness. Finally, the lithium metal foil is laminated onto a current collector foil.
b, Lithium metal is liquefied (approx. 180 °C>) and coated onto the Cu current collector foil. A porous collector is mandatory
for lithium infiltration. ¢, Lithium metal substrate is evaporated by energy insertion (e.g., by sputtering or pulsed-laser) and
is thus deposited onto the current collector foil. d, Lithium metal is deposited electrochemically from lithium-ions provided
by the cathode active material and/or sacrificial salts. Lithium metal anode is formed during the first charge procedure.
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Table 1 | Overview of key advantages and disadvantages as well as technical specifications of discussed rechargeable
battery technologies. Technical specifications for LIB and PLIB technologies such as nominal voltage, operating voltage
window, power at cell level, cycle life, energy efficiency and tendency for self-discharge were taken from literature.12:105,107-
111 Values might deviate individual cases, depending on the used cell chemistry (active material, type of electrolyte, presence
of redox mediators in LABs), cell parameters and operating conditions such as temperature; external pressure on stack. ND,

no data available; RT, room temperature.

LlBlOS S|Bul LSBlOS,lUS SSB12,103,109 LABIOS,107,110
Advantages High technological Raw material Low cost cathode Higher safety with Li Low-cost, cathode
maturity availability metal
High gravimetric High theoretical
High volumetric energy density Selected systems gravimetric energy
energy density with wide density
temperature range
Long life
High energy density
with Li metal
Disadvantages Costs of selected Moderate Large electrolyte May require stack Low cycle life

materials

Availability and
environmental impact
of raw materials

volumetric and
gravimetric energy
densities

Promising
chemistries not
finally decided

excess required

Pronounced self-
discharge of
discharge
intermediates

High cost anode

pressure

Uncertain material
and processing costs

High cost anode

Promising
chemistries not
finally decided

Pronounced voltage
hysteresis;, poor
energy efficiency

Sensitive to air
impurities

High cost anode

Promising chemistry
not finally decided

Nominal voltage 3.2-3.85V 3.1-3.3Vv 2.1-2.2V 3.7-3.8V 2.6-29V
Operating 3.0-4.2V 1.0-4.2V 1.8-2.8V 2.5-4.25V 2143V
voltage window
(often above RT)
Areal electrode 3-5 mAh cm? 3-4 mAh cm?? 5-8 mAh cm? 0.5-14 mAh cm? 2-4 mAh cm??
capacity
Power (Cell) 1-20 kW kg* 2-5 kW kg* 0.1-1 kW kg? 0.01-3 kW kg* ND
(temperature-
dependent)
Cycle Life 1000-6000 500-4000 100-500 100-1000 5-100

Energy Efficiency

High (>90%)

High (>90%)

Moderate (70-95%)

Low (50-76%)

Low (60-80%)

Self-Discharge

Low

Low-Medium

High

Low

ND
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Table 2 | The largest LIB production sites announced for 2025 in Europe, Asia and USA.

Region / Factory Headquarter Capacity
Manufacturer location location 2025 (GWHh)
Europe

LG Chem Wroclaw | Poland South Korea 62
CATL Erfurt | Germany China 37
Northvolt Skellefted | Sweden Sweden/Germany 32
Samsung SDI Goed | Hungary Hungary 16
Northvolt/VW Salzgitter | Germany Sweden/Germany 16
SK Innovation Komarom | Hungary South Korea 10
Asia

LG Chem Nanjing (two locations) | China South Korea 99
CATL Ningde | China China 76
Wanxiang (A123) Hangzhou | China China 46
Tesla Shanghai | China us 26
BYD Shenzhen | China China 15
Samsung SDI Ulsan | South Korea South Korea 23
Panasonic Suminoe | Japan Japan 20
LG Chem Ochang | South Korea South Korea 19
USA

Tesla Sparks | US us 76
LG Chem Holland | US South Korea 19
SKI Commerce | US South Korea 13

Data taken from literature
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Table 3 | Comparison of singling technologies.

Process step Slitting Cutting

Process technology Roll-knife Laser Stamping Laser

Investment per

machine ~1 Mio. USS ~2 Mio. USS ~0,5 Mio.USS ~0,5 Mio.USS
Machine capacit 4054 4054 288 102
pacity sheets min sheets min sheets min sheets min
. 100 100 360 100
Working speed m min* m min* strokes min™ m min*
Working width 15m 15m - -

Machine capacities are calculated based on working speed and/or working width, overall equipment

effectiveness (80%), sheet width (95 mm), and sheet length (296 mm). For slitting, working speeds are taken

from ref. 103113 and working widths are taken from ref. 35103, For cutting, working speeds are taken from ref.

103113, Investments for slitting are adopted from ref. 104113 and for cutting from ref. 103113,

Table 4 | Comparison of manufacturing environments.

Standard Dry room Inert gas
Investment ~600 USS m3 ~2,000 USS m3 >13,000 USS m™3
. 0.17 USS m3d* 2.76 USS m3dt
Resource consumption - -
(electricity) (argon)

Reference parameters: Location Germany; Height factory building 4m; Inert gas atmosphere within glovebox.
Data taken from literature 103,104,113 |
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