000904256 001__ 904256
000904256 005__ 20240712113108.0
000904256 0247_ $$2doi$$a10.1016/j.est.2021.103231
000904256 0247_ $$2ISSN$$a2352-152X
000904256 0247_ $$2ISSN$$a2352-1538
000904256 0247_ $$2Handle$$a2128/30967
000904256 0247_ $$2WOS$$aWOS:000709710100004
000904256 0247_ $$2altmetric$$aaltmetric:114124824
000904256 037__ $$aFZJ-2021-05826
000904256 082__ $$a333.7
000904256 1001_ $$0P:(DE-Juel1)166236$$aSick, Nathalie$$b0$$eCorresponding author
000904256 245__ $$aA review of the publication and patent landscape of anode materials for lithium ion batteries
000904256 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000904256 3367_ $$2DRIVER$$aarticle
000904256 3367_ $$2DataCite$$aOutput Types/Journal article
000904256 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648637049_19887
000904256 3367_ $$2BibTeX$$aARTICLE
000904256 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904256 3367_ $$00$$2EndNote$$aJournal Article
000904256 520__ $$aFor a successful transition from internal combustion engines to electric vehicles and from conventional power plants to renewable energy supply, battery technology plays a vital role. Accordingly, battery research and development (R&D) efforts have been increased considerably over the past decades, particularly regarding materials and cell chemistries to further improve the electrochemical performance of lithium ion batteries. The impetus behind such massive R&D has been the replacement of metallic lithium anodes, a notorious for potentially catastrophic shorting by lithium metal dendrites. However, despite the promise of a step improvement in energy density outperforming established LIB technology, the commercial introduction of cells with alternative anode materials in the mass market is slow. Against this backdrop, the aim of the present study is to provide an overview of current developments in the academic and industrial research arena, summarising the historical development of scientific literature and patent landscape beyond established anode materials. The study identifies and critically reviews tin, silicon, silicon oxide, aluminium and titanium-based anode materials as promising pathways to develop high-energy density next-generation LIBs.
000904256 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000904256 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904256 7001_ $$0P:(DE-Juel1)169302$$aKrätzig, Oliver$$b1
000904256 7001_ $$0P:(DE-HGF)0$$aEshetu, Gebrekidan Gebresilassie$$b2
000904256 7001_ $$0P:(DE-Juel1)165182$$aFiggemeier, Egbert$$b3$$eCorresponding author$$ufzj
000904256 773__ $$0PERI:(DE-600)2826805-2$$a10.1016/j.est.2021.103231$$gVol. 43, p. 103231 -$$p103231 -$$tJournal of energy storage$$v43$$x2352-152X$$y2021
000904256 8564_ $$uhttps://juser.fz-juelich.de/record/904256/files/1-s2.0-S2352152X21009282-main.pdf$$yRestricted
000904256 8564_ $$uhttps://juser.fz-juelich.de/record/904256/files/PDF.js%20viewer_Sick.pdf$$yPublished on 2021-09-27. Available in OpenAccess from 2023-09-27.
000904256 909CO $$ooai:juser.fz-juelich.de:904256$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904256 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000904256 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000904256 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000904256 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904256 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904256 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ENERGY STORAGE : 2019$$d2021-01-28
000904256 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000904256 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000904256 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000904256 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000904256 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000904256 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165182$$aForschungszentrum Jülich$$b3$$kFZJ
000904256 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000904256 9141_ $$y2022
000904256 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000904256 9801_ $$aFullTexts
000904256 980__ $$ajournal
000904256 980__ $$aVDB
000904256 980__ $$aUNRESTRICTED
000904256 980__ $$aI:(DE-Juel1)IEK-12-20141217
000904256 981__ $$aI:(DE-Juel1)IMD-4-20141217