| Home > Publications database > Si-on-Graphite fabricated by fluidized bed process for high-capacity anodes of Li-ion batteries > print |
| 001 | 904272 | ||
| 005 | 20240712113108.0 | ||
| 024 | 7 | _ | |a 10.1016/j.cej.2020.126603 |2 doi |
| 024 | 7 | _ | |a 1385-8947 |2 ISSN |
| 024 | 7 | _ | |a 1873-3212 |2 ISSN |
| 024 | 7 | _ | |a WOS:000607599400006 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-05842 |
| 100 | 1 | _ | |a Müller, Jannes |b 0 |
| 245 | _ | _ | |a Si-on-Graphite fabricated by fluidized bed process for high-capacity anodes of Li-ion batteries |
| 260 | _ | _ | |a Amsterdam |c 2021 |b Elsevier |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712840646_18267 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a Zudem unterstützt durch BMBF Projekt: 03XP0133C |
| 520 | _ | _ | |a Composites consisting of graphite and silicon have been considered as potential high-capacity anode materials for the next-generation Li-ion batteries (LIBs). The synthesis method is critical for determining the microstructure, which is directly related to the material performance and the cost-efficiency for making commercial electrode materials. Herein, we report the fabrication of silicon-on-graphite (Si@Gr) composites by fluidized bed granulation (FBG) for the first time. The FBG process is shown to produce composite powders comprising a uniform layer of nano-sized Si particles lodged onto the surface of micron-sized graphite particles to possess a core-shell microstructure. Adopting a suitable binder during the FBG process enables a firm adhesion of the Si nanoparticles on graphite surface during subsequent carbon-coating, where the composite particles are coated with pitch and then carbonised to form a highly electronically conductive and mechanical stabilizing layer of amorphous carbon. These carbon-coated composites exhibit a high capacity reaching over 600 mAh g−1, high rate capability and illustrates the potential of long-cycle stability in Si@Gr || Li metal cells, showing more than 70% capacity retention after 400 charge-discharge cycles even without electrolyte optimization. Furthermore, a significantly improved cycling stability is found for the carbon-coated Si@Gr materials in LiNi0.6Co0.2Mn0.2O2 (NCM-622) || Si@Gr full-cells. |
| 536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
| 536 | _ | _ | |a LiBEST - Lithium-Ionen-Akku mit hoher elektrochemischer Leistung und Sicherheit (13XP0133A) |0 G:(BMBF)13XP0133A |c 13XP0133A |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Abdollahifar, Mozaffar |b 1 |
| 700 | 1 | _ | |a Vinograd, Andrey |b 2 |
| 700 | 1 | _ | |a Nöske, Markus |b 3 |
| 700 | 1 | _ | |a Nowak, Christine |b 4 |
| 700 | 1 | _ | |a Chang, Shu-Jui |b 5 |
| 700 | 1 | _ | |a Placke, Tobias |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Haselrieder, Wolfgang |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 8 |
| 700 | 1 | _ | |a Kwade, Arno |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Wu, Nae-Lih |0 P:(DE-HGF)0 |b 10 |e Corresponding author |
| 773 | _ | _ | |a 10.1016/j.cej.2020.126603 |g Vol. 407, p. 126603 - |0 PERI:(DE-600)2012137-4 |p 126603 - |t The chemical engineering journal |v 407 |y 2021 |x 1385-8947 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/904272/files/Si-on-Graphite%20fabricated%20by%20fluidized%20bed%20process%20for%20high-capacity%20anodes%20of%20Li-ion%20batteries.pdf |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/904272/files/Si-on-Graphite%20fabricated%20by%20fluidized%20bed%20process%20for%20high-capacity%20anodes%20of%20Li-ion%20batteries.gif?subformat=icon |x icon |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/904272/files/Si-on-Graphite%20fabricated%20by%20fluidized%20bed%20process%20for%20high-capacity%20anodes%20of%20Li-ion%20batteries.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/904272/files/Si-on-Graphite%20fabricated%20by%20fluidized%20bed%20process%20for%20high-capacity%20anodes%20of%20Li-ion%20batteries.jpg?subformat=icon-180 |x icon-180 |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/904272/files/Si-on-Graphite%20fabricated%20by%20fluidized%20bed%20process%20for%20high-capacity%20anodes%20of%20Li-ion%20batteries.jpg?subformat=icon-640 |x icon-640 |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:904272 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)166130 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-02-04 |w ger |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEM ENG J : 2019 |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-02-04 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-04 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-04 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b CHEM ENG J : 2019 |d 2021-02-04 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|