000904282 001__ 904282
000904282 005__ 20240712113146.0
000904282 0247_ $$2doi$$a10.1021/acs.jpcc.0c11089
000904282 0247_ $$2ISSN$$a1932-7447
000904282 0247_ $$2ISSN$$a1932-7455
000904282 0247_ $$2WOS$$aWOS:000624451700031
000904282 037__ $$aFZJ-2021-05852
000904282 082__ $$a530
000904282 1001_ $$0P:(DE-HGF)0$$aLi, Peng$$b0
000904282 245__ $$aEstablishment of the Potential of Zero Charge of Metals in Aqueous Solutions: Different Faces of Water Revealed by Ab Initio Molecular Dynamics Simulations
000904282 260__ $$aWashington, DC$$bSoc.$$c2021
000904282 3367_ $$2DRIVER$$aarticle
000904282 3367_ $$2DataCite$$aOutput Types/Journal article
000904282 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642432636_30509
000904282 3367_ $$2BibTeX$$aARTICLE
000904282 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904282 3367_ $$00$$2EndNote$$aJournal Article
000904282 500__ $$aKein Post-print vorhanden
000904282 520__ $$aMetal–water interactions are investigated using ab initio molecular dynamics simulations performed on water-interfaced Pt(111) and Au(111) as model systems, aiming at understanding the mechanism of interface water molecules to regulate the potential of zero charge (PZC) of metal electrodes in aqueous solutions. Several metal–water interactions are distinguished, and their effects on the metal work function (WF) are quantified through carefully correlating the interfacial atomic and electronic structures. The first layer of interface water molecules possesses an O-down configuration and significantly lowers the metal WF by increasing the near-surface electron density through Pauli repulsion, coordination bonding, and subordinate dipole orientation. In contrast, the H-down-configured water molecules in the second solvation layer increase the metal WF due to the metal–hydrogen bonding interaction and dipole orientation. Involved in the second layer are also water molecules that have no preferred orientation and merely act as hydrogen bond linkers. They negligibly affect the electronic structure of metal electrodes. Introducing chemisorbed hydrogen (Had) with varying coverages modulates the metal–water interactions, resulting in a nonmonotonic variation of the metal WF. The atomic insights obtained not only help to enunciate the long-standing puzzle of a significant decrease in the PZC of metal electrodes by solvation but also add to our understanding of the behaviors of metal–solution interfaces, for examples, the potential- and adsorbate-dependent interfacial capacitance.
000904282 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000904282 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904282 7001_ $$0P:(DE-Juel1)185067$$aHuang, Jun$$b1
000904282 7001_ $$0P:(DE-HGF)0$$aHu, Youcheng$$b2
000904282 7001_ $$00000-0001-7448-8860$$aChen, Shengli$$b3$$eCorresponding author
000904282 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.0c11089$$gVol. 125, no. 7, p. 3972 - 3979$$n7$$p3972 - 3979$$tThe journal of physical chemistry <Washington, DC> / C$$v125$$x1932-7447$$y2021
000904282 8564_ $$uhttps://juser.fz-juelich.de/record/904282/files/acs.jpcc.0c11089.pdf$$yRestricted
000904282 909CO $$ooai:juser.fz-juelich.de:904282$$pVDB
000904282 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185067$$aForschungszentrum Jülich$$b1$$kFZJ
000904282 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000904282 9141_ $$y2021
000904282 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2019$$d2021-02-02
000904282 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000904282 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000904282 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000904282 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000904282 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000904282 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000904282 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000904282 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000904282 920__ $$lyes
000904282 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000904282 980__ $$ajournal
000904282 980__ $$aVDB
000904282 980__ $$aI:(DE-Juel1)IEK-13-20190226
000904282 980__ $$aUNRESTRICTED
000904282 981__ $$aI:(DE-Juel1)IET-3-20190226