000904285 001__ 904285
000904285 005__ 20240709082018.0
000904285 0247_ $$2doi$$a10.1016/j.ijhydene.2021.09.103
000904285 0247_ $$2ISSN$$a0360-3199
000904285 0247_ $$2ISSN$$a1879-3487
000904285 0247_ $$2Handle$$a2128/30168
000904285 0247_ $$2WOS$$aWOS:000711605300010
000904285 037__ $$aFZJ-2021-05855
000904285 082__ $$a620
000904285 1001_ $$0P:(DE-Juel1)180398$$aCheng, Tianliang$$b0
000904285 245__ $$aFault prognosis control of solid oxide fuel cell system based on health evaluation
000904285 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000904285 3367_ $$2DRIVER$$aarticle
000904285 3367_ $$2DataCite$$aOutput Types/Journal article
000904285 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642001641_10731
000904285 3367_ $$2BibTeX$$aARTICLE
000904285 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904285 3367_ $$00$$2EndNote$$aJournal Article
000904285 520__ $$aHigh cost and short life-span hinder the large-scale commercial application of solid oxide fuel cell technology. System performance inevitably degrades and gradually evolves into faults in the long run, leading to the change of system input-output characteristics. The control system designed based on initial conditions faces with problems such as parameter mismatch, inaccurate control and even wrong control laws. This paper proposes an adaptive control strategy to enable the system controller to cope with degradation and fault phenomena in real systems. The system characteristics under different degradation and fault conditions are investigated. A novel health evaluation system is developed, where an early fault identification and pretreatment approach based on optimal operation point optimization model and fuzzy neural network are adopted for control optimization. Simulation results show that the enhanced system controller can improve system efficiency by about 2% and prolong life-span significantly with the reality of degradation and fault mechanisms.
000904285 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000904285 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904285 7001_ $$0P:(DE-HGF)0$$aQin, Hongchuan$$b1
000904285 7001_ $$0P:(DE-HGF)0$$aCheng, Zhe$$b2
000904285 7001_ $$0P:(DE-HGF)0$$aYan, Dong$$b3
000904285 7001_ $$0P:(DE-HGF)0$$aJia, Lichao$$b4
000904285 7001_ $$0P:(DE-HGF)0$$aJiang, Jianhua$$b5$$eCorresponding author
000904285 7001_ $$0P:(DE-HGF)0$$aLi, Jian$$b6
000904285 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2021.09.103$$gVol. 46, no. 77, p. 38425 - 38450$$n77$$p38425 - 38450$$tInternational journal of hydrogen energy$$v46$$x0360-3199$$y2021
000904285 8564_ $$uhttps://juser.fz-juelich.de/record/904285/files/Manuscript-IJHE.pdf$$yPublished on 2021-10-07. Available in OpenAccess from 2023-10-07.
000904285 909CO $$ooai:juser.fz-juelich.de:904285$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180398$$aForschungszentrum Jülich$$b0$$kFZJ
000904285 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180398$$aRWTH Aachen$$b0$$kRWTH
000904285 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000904285 9141_ $$y2021
000904285 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000904285 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000904285 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000904285 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000904285 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904285 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904285 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2019$$d2021-01-28
000904285 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000904285 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000904285 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000904285 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000904285 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000904285 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000904285 920__ $$lyes
000904285 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000904285 9801_ $$aFullTexts
000904285 980__ $$ajournal
000904285 980__ $$aVDB
000904285 980__ $$aUNRESTRICTED
000904285 980__ $$aI:(DE-Juel1)IEK-14-20191129
000904285 981__ $$aI:(DE-Juel1)IET-4-20191129