000904289 001__ 904289
000904289 005__ 20220131120423.0
000904289 0247_ $$2doi$$a10.1038/s41467-021-24306-2
000904289 0247_ $$2Handle$$a2128/29745
000904289 0247_ $$2altmetric$$aaltmetric:109054422
000904289 0247_ $$2pmid$$apmid:34244483
000904289 0247_ $$2WOS$$aWOS:000674487100036
000904289 037__ $$aFZJ-2021-05859
000904289 082__ $$a500
000904289 1001_ $$0P:(DE-HGF)0$$aArnatkeviciute, Aurina$$b0$$eCorresponding author
000904289 245__ $$aGenetic influences on hub connectivity of the human connectome
000904289 260__ $$a[London]$$bNature Publishing Group UK$$c2021
000904289 3367_ $$2DRIVER$$aarticle
000904289 3367_ $$2DataCite$$aOutput Types/Journal article
000904289 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641207311_4795
000904289 3367_ $$2BibTeX$$aARTICLE
000904289 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904289 3367_ $$00$$2EndNote$$aJournal Article
000904289 520__ $$aBrain network hubs are both highly connected and highly inter-connected, forming a critical communication backbone for coherent neural dynamics. The mechanisms driving this organization are poorly understood. Using diffusion-weighted magnetic resonance imaging in twins, we identify a major role for genes, showing that they preferentially influence connectivity strength between network hubs of the human connectome. Using transcriptomic atlas data, we show that connected hubs demonstrate tight coupling of transcriptional activity related to metabolic and cytoarchitectonic similarity. Finally, comparing over thirteen generative models of network growth, we show that purely stochastic processes cannot explain the precise wiring patterns of hubs, and that model performance can be improved by incorporating genetic constraints. Our findings indicate that genes play a strong and preferential role in shaping the functionally valuable, metabolically costly connections between connectome hubs.
000904289 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000904289 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x1
000904289 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904289 7001_ $$00000-0002-3003-4055$$aFulcher, Ben D.$$b1
000904289 7001_ $$0P:(DE-HGF)0$$aOldham, Stuart$$b2
000904289 7001_ $$00000-0001-7835-6398$$aTiego, Jeggan$$b3
000904289 7001_ $$0P:(DE-Juel1)187055$$aPaquola, Casey$$b4
000904289 7001_ $$00000-0002-2445-1266$$aGerring, Zachary$$b5
000904289 7001_ $$0P:(DE-HGF)0$$aAquino, Kevin$$b6
000904289 7001_ $$0P:(DE-HGF)0$$aHawi, Ziarih$$b7
000904289 7001_ $$0P:(DE-HGF)0$$aJohnson, Beth$$b8
000904289 7001_ $$0P:(DE-HGF)0$$aBall, Gareth$$b9
000904289 7001_ $$00000-0001-8784-5679$$aKlein, Marieke$$b10
000904289 7001_ $$00000-0002-8995-7583$$aDeco, Gustavo$$b11
000904289 7001_ $$00000-0003-4375-6572$$aFranke, Barbara$$b12
000904289 7001_ $$00000-0003-0186-8349$$aBellgrove, Mark A.$$b13
000904289 7001_ $$00000-0003-0866-3477$$aFornito, Alex$$b14
000904289 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-021-24306-2$$gVol. 12, no. 1, p. 4237$$n1$$p4237$$tNature Communications$$v12$$x2041-1723$$y2021
000904289 8564_ $$uhttps://juser.fz-juelich.de/record/904289/files/s41467-021-24306-2.pdf$$yOpenAccess
000904289 909CO $$ooai:juser.fz-juelich.de:904289$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904289 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187055$$aForschungszentrum Jülich$$b4$$kFZJ
000904289 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000904289 9141_ $$y2021
000904289 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2019$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904289 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000904289 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904289 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2019$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000904289 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02
000904289 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000904289 9801_ $$aFullTexts
000904289 980__ $$ajournal
000904289 980__ $$aVDB
000904289 980__ $$aUNRESTRICTED
000904289 980__ $$aI:(DE-Juel1)INM-1-20090406