000904309 001__ 904309
000904309 005__ 20220103172031.0
000904309 0247_ $$2doi$$a10.1002/anie.202016070
000904309 0247_ $$2ISSN$$a0570-0833
000904309 0247_ $$2ISSN$$a1433-7851
000904309 0247_ $$2ISSN$$a1521-3773
000904309 0247_ $$2Handle$$a2128/29710
000904309 0247_ $$2altmetric$$aaltmetric:102834006
000904309 0247_ $$2pmid$$apmid:33768661
000904309 0247_ $$2WOS$$aWOS:000647987600001
000904309 037__ $$aFZJ-2021-05879
000904309 082__ $$a540
000904309 1001_ $$00000-0002-2392-8050$$aDubey, Abhinav$$b0
000904309 245__ $$aLocal Deuteration Enables NMR Observation of Methyl Groups in Proteins from Eukaryotic and Cell‐Free Expression Systems
000904309 260__ $$aWeinheim$$bWiley-VCH$$c2021
000904309 3367_ $$2DRIVER$$aarticle
000904309 3367_ $$2DataCite$$aOutput Types/Journal article
000904309 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640944486_7048
000904309 3367_ $$2BibTeX$$aARTICLE
000904309 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904309 3367_ $$00$$2EndNote$$aJournal Article
000904309 520__ $$aTherapeutically relevant proteins such as GPCRs, antibodies and kinases face clear limitations in NMR studies due to the challenges in site-specific isotope labeling and deuteration in eukaryotic expression systems. Here we describe an efficient and simple method to observe the methyl groups of leucine residues in proteins expressed in bacterial, eukaryotic or cell-free expression systems without modification of the expression protocol. The method relies on simple stereo-selective 13C-labeling and deuteration of leucine that alleviates the need for additional deuteration of the protein. The spectroscopic benefits of “local” deuteration are examined in detail through Forbidden Coherence Transfer (FCT) experiments and simulations. The utility of this labeling method is demonstrated in the cell-free synthesis of bacteriorhodopsin and in the insect-cell expression of the RRM2 domain of human RBM39.
000904309 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000904309 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904309 7001_ $$0P:(DE-HGF)0$$aStoyanov, Nikolay$$b1
000904309 7001_ $$0P:(DE-Juel1)161253$$aViennet, Thibault$$b2
000904309 7001_ $$0P:(DE-HGF)0$$aChhabra, Sandeep$$b3
000904309 7001_ $$0P:(DE-HGF)0$$aElter, Shantha$$b4
000904309 7001_ $$0P:(DE-Juel1)168267$$aBorggräfe, Jan$$b5
000904309 7001_ $$0P:(DE-Juel1)161140$$aViegas, Aldino$$b6
000904309 7001_ $$0P:(DE-HGF)0$$aNowak, Radosław P.$$b7
000904309 7001_ $$0P:(DE-HGF)0$$aBurdzhiev, Nikola$$b8
000904309 7001_ $$0P:(DE-HGF)0$$aPetrov, Ognyan$$b9
000904309 7001_ $$0P:(DE-HGF)0$$aFischer, Eric S.$$b10
000904309 7001_ $$0P:(DE-Juel1)156341$$aEtzkorn, Manuel$$b11$$eCorresponding author
000904309 7001_ $$0P:(DE-HGF)0$$aGelev, Vladimir$$b12$$eCorresponding author
000904309 7001_ $$00000-0002-7281-1289$$aArthanari, Haribabu$$b13$$eCorresponding author
000904309 773__ $$0PERI:(DE-600)2011836-3$$a10.1002/anie.202016070$$gVol. 60, no. 25, p. 13783 - 13787$$n25$$p13783 - 13787$$tAngewandte Chemie / International edition$$v60$$x0570-0833$$y2021
000904309 8564_ $$uhttps://juser.fz-juelich.de/record/904309/files/Angewandte%20Chemie%20Intl%20Edit%20-%202021%20-%20Dubey%20-%20Local%20Deuteration%20Enables%20NMR%20Observation%20of%20Methyl%20Groups%20in%20Proteins%20from.pdf$$yOpenAccess
000904309 909CO $$ooai:juser.fz-juelich.de:904309$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156341$$aForschungszentrum Jülich$$b11$$kFZJ
000904309 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000904309 9141_ $$y2021
000904309 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000904309 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000904309 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000904309 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000904309 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANGEW CHEM INT EDIT : 2019$$d2021-01-30
000904309 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bANGEW CHEM INT EDIT : 2019$$d2021-01-30
000904309 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000904309 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000904309 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-30
000904309 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000904309 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000904309 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904309 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000904309 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-30
000904309 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000904309 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000904309 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000904309 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000904309 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000904309 980__ $$ajournal
000904309 980__ $$aVDB
000904309 980__ $$aUNRESTRICTED
000904309 980__ $$aI:(DE-Juel1)IBI-7-20200312
000904309 9801_ $$aFullTexts