000904315 001__ 904315
000904315 005__ 20230113085413.0
000904315 0247_ $$2doi$$a10.1021/acssynbio.0c00454
000904315 0247_ $$2pmid$$a33325704
000904315 0247_ $$2WOS$$aWOS:000643603000007
000904315 037__ $$aFZJ-2021-05885
000904315 082__ $$a570
000904315 1001_ $$0P:(DE-HGF)0$$aYudenko, Anna$$b0
000904315 245__ $$aRational Design of a Split Flavin-Based Fluorescent Reporter
000904315 260__ $$aWashington, DC$$bACS$$c2021
000904315 3367_ $$2DRIVER$$aarticle
000904315 3367_ $$2DataCite$$aOutput Types/Journal article
000904315 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1672825077_27125
000904315 3367_ $$2BibTeX$$aARTICLE
000904315 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904315 3367_ $$00$$2EndNote$$aJournal Article
000904315 520__ $$aProtein-fragment complementation assays are used ubiquitously for probing protein–protein interactions. Most commonly, the reporter protein is split in two parts, which are then fused to the proteins of interest and can reassemble and provide a readout if the proteins of interest interact with each other. The currently known split fluorescent proteins either can be used only in aerobic conditions and assemble irreversibly, or require addition of exogenous chromophores, which complicates the design of experiments. In recent years, light-oxygen-voltage (LOV) domains of several photoreceptor proteins have been developed into flavin-based fluorescent proteins (FbFPs) that, under some circumstances, can outperform commonly used fluorescent proteins such as GFP. Here, we show that CagFbFP, a small thermostable FbFP based on a LOV domain-containing protein from Chloroflexus aggregans, can serve as a split fluorescent reporter. We use the available genetic and structural information to identify three loops between the conserved secondary structure elements, Aβ-Bβ, Eα-Fα, and Hβ-Iβ, that tolerate insertion of flexible poly-Gly/Ser segments and eventually splitting. We demonstrate that the designed split pairs, when fused to interacting proteins, are fluorescent in vivo in E. coli and human cells and have low background fluorescence. Our results enable probing protein–protein interactions in anaerobic conditions without using exogenous fluorophores and provide a basis for further development of LOV and PAS (Per-Arnt-Sim) domain-based fluorescent reporters and optogenetic tools.
000904315 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000904315 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904315 7001_ $$0P:(DE-HGF)0$$aSmolentseva, Anastasia$$b1
000904315 7001_ $$0P:(DE-HGF)0$$aMaslov, Ivan$$b2
000904315 7001_ $$0P:(DE-HGF)0$$aSemenov, Oleg$$b3
000904315 7001_ $$0P:(DE-HGF)0$$aGoncharov, Ivan M.$$b4
000904315 7001_ $$0P:(DE-HGF)0$$aNazarenko, Vera V.$$b5
000904315 7001_ $$00000-0002-9216-4525$$aMaliar, Nina L.$$b6
000904315 7001_ $$0P:(DE-HGF)0$$aBorshchevskiy, Valentin$$b7
000904315 7001_ $$0P:(DE-Juel1)131964$$aGordeliy, Valentin$$b8$$ufzj
000904315 7001_ $$0P:(DE-HGF)0$$aRemeeva, Alina$$b9
000904315 7001_ $$0P:(DE-Juel1)165798$$aGushchin, Ivan$$b10$$eCorresponding author
000904315 773__ $$0PERI:(DE-600)2644383-1$$a10.1021/acssynbio.0c00454$$gVol. 10, no. 1, p. 72 - 83$$n1$$p72 - 83$$tACS synthetic biology$$v10$$x2161-5063$$y2021
000904315 8564_ $$uhttps://juser.fz-juelich.de/record/904315/files/acssynbio.0c00454.pdf$$yRestricted
000904315 909CO $$ooai:juser.fz-juelich.de:904315$$pVDB
000904315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131964$$aForschungszentrum Jülich$$b8$$kFZJ
000904315 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000904315 9141_ $$y2021
000904315 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS SYNTH BIOL : 2019$$d2021-01-29
000904315 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000904315 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000904315 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000904315 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000904315 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-29
000904315 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000904315 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000904315 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000904315 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000904315 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000904315 980__ $$ajournal
000904315 980__ $$aVDB
000904315 980__ $$aI:(DE-Juel1)IBI-7-20200312
000904315 980__ $$aUNRESTRICTED