000904318 001__ 904318
000904318 005__ 20220103172041.0
000904318 0247_ $$2doi$$a10.1002/anie.202103882
000904318 0247_ $$2ISSN$$a0570-0833
000904318 0247_ $$2ISSN$$a1433-7851
000904318 0247_ $$2ISSN$$a1521-3773
000904318 0247_ $$2Handle$$a2128/29716
000904318 0247_ $$2altmetric$$aaltmetric:111009006
000904318 0247_ $$2pmid$$apmid:34339559
000904318 0247_ $$2WOS$$aWOS:000695899000001
000904318 037__ $$aFZJ-2021-05888
000904318 082__ $$a540
000904318 1001_ $$aWeissbecker, Juliane$$b0
000904318 245__ $$aThe Voltage Dependent Sidedness of the Reprotonation of the Retinal Schiff Base Determines the Unique Inward Pumping of Xenorhodopsin
000904318 260__ $$aWeinheim$$bWiley-VCH$$c2021
000904318 3367_ $$2DRIVER$$aarticle
000904318 3367_ $$2DataCite$$aOutput Types/Journal article
000904318 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640944919_14773
000904318 3367_ $$2BibTeX$$aARTICLE
000904318 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904318 3367_ $$00$$2EndNote$$aJournal Article
000904318 520__ $$aThe unique behaviour of inward proton pumping xenorhodopsins (XeR) makes these microbial rhodopsins an alternative optogenetic tool to the passively transporting light-gated ion channels (e.g. channelrhodopsin-1 and channelrhodopsin-2), because the activation of electrically excitable cells by XeRs is independent from the surrounding physiological conditions. Here, we functionally and spectroscopically characterized XeR from Nanosalina (NsXeR)
000904318 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000904318 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904318 7001_ $$aBoumrifak, Chokri$$b1
000904318 7001_ $$aBreyer, Maximilian$$b2
000904318 7001_ $$aWießalla, Tristan$$b3
000904318 7001_ $$aShevchenko, Vitaly$$b4
000904318 7001_ $$aMager, Thomas$$b5
000904318 7001_ $$00000-0001-9441-0243$$aSlavov, Chavdar$$b6
000904318 7001_ $$aAlekseev, Alexey$$b7
000904318 7001_ $$aKovalev, Kirill$$b8
000904318 7001_ $$0P:(DE-Juel1)131964$$aGordeliy, Valentin$$b9
000904318 7001_ $$00000-0002-5411-6207$$aBamberg, Ernst$$b10$$eCorresponding author
000904318 7001_ $$00000-0002-8496-8240$$aWachtveitl, Josef$$b11$$eCorresponding author
000904318 773__ $$0PERI:(DE-600)2011836-3$$a10.1002/anie.202103882$$gVol. 60, no. 42, p. 23010 - 23017$$n42$$p23010 - 23017$$tAngewandte Chemie / International edition$$v60$$x0570-0833$$y2021
000904318 8564_ $$uhttps://juser.fz-juelich.de/record/904318/files/Angewandte%20Chemie%20Intl%20Edit%20-%202021%20-%20Weissbecker%20-%20The%20Voltage%20Dependent%20Sidedness%20of%20the%20Reprotonation%20of%20the%20Retinal.pdf$$yOpenAccess
000904318 909CO $$ooai:juser.fz-juelich.de:904318$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904318 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131964$$aForschungszentrum Jülich$$b9$$kFZJ
000904318 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000904318 9141_ $$y2021
000904318 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000904318 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000904318 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904318 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000904318 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANGEW CHEM INT EDIT : 2019$$d2021-01-30
000904318 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bANGEW CHEM INT EDIT : 2019$$d2021-01-30
000904318 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000904318 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000904318 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-30
000904318 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000904318 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000904318 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904318 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000904318 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-30
000904318 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000904318 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000904318 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000904318 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000904318 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000904318 980__ $$ajournal
000904318 980__ $$aVDB
000904318 980__ $$aUNRESTRICTED
000904318 980__ $$aI:(DE-Juel1)IBI-7-20200312
000904318 9801_ $$aFullTexts