001     904319
005     20220103172029.0
024 7 _ |a 10.1016/j.jmb.2020.166763
|2 doi
024 7 _ |a 0022-2836
|2 ISSN
024 7 _ |a 1089-8638
|2 ISSN
024 7 _ |a 2128/29692
|2 Handle
024 7 _ |a altmetric:96702248
|2 altmetric
024 7 _ |a pmid:33359098
|2 pmid
024 7 _ |a WOS:000616181400002
|2 WOS
037 _ _ |a FZJ-2021-05889
082 _ _ |a 610
100 1 _ |a Varaksa, Tatsiana
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Metabolic Fate of Human Immunoactive Sterols in Mycobacterium tuberculosis
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640940767_31144
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mycobacterium tuberculosis (Mtb) infection is among top ten causes of death worldwide, and the number of drug-resistant strains is increasing. The direct interception of human immune signaling molecules by Mtb remains elusive, limiting drug discovery. Oxysterols and secosteroids regulate both innate and adaptive immune responses. Here we report a functional, structural, and bioinformatics study of Mtb enzymes initiating cholesterol catabolism and demonstrated their interrelation with human immunity. We show that these enzymes metabolize human immune oxysterol messengers. Rv2266 – the most potent among them – can also metabolize vitamin D3 (VD3) derivatives. High-resolution structures show common patterns of sterols binding and reveal a site for oxidative attack during catalysis. Finally, we designed a compound that binds and inhibits three studied proteins. The compound shows activity against Mtb H37Rv residing in macrophages. Our findings contribute to molecular understanding of suppression of immunity and suggest that Mtb has its own transformation system resembling the human phase I drug-metabolizing system.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bukhdruker, Sergey
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Grabovec, Irina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Marin, Egor
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kavaleuski, Anton
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gusach, Anastasiia
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kovalev, Kirill
|b 6
700 1 _ |a Maslov, Ivan
|b 7
700 1 _ |a Luginina, Aleksandra
|b 8
700 1 _ |a Zabelskii, Dmitrii
|0 P:(DE-Juel1)176570
|b 9
|u fzj
700 1 _ |a Astashkin, Roman
|b 10
700 1 _ |a Shevtsov, Mikhail
|b 11
700 1 _ |a Smolskaya, Sviatlana
|b 12
700 1 _ |a Kavaleuskaya, Anna
|b 13
700 1 _ |a Shabunya, Polina
|b 14
700 1 _ |a Baranovsky, Alexander
|b 15
700 1 _ |a Dolgopalets, Vladimir
|b 16
700 1 _ |a Charnou, Yury
|b 17
700 1 _ |a Savachka, Aleh
|b 18
700 1 _ |a Litvinovskaya, Raisa
|b 19
700 1 _ |a Hurski, Alaksiej
|b 20
700 1 _ |a Shevchenko, Evgeny
|b 21
700 1 _ |a Rogachev, Andrey
|b 22
700 1 _ |a Mishin, Alexey
|b 23
700 1 _ |a Gordeliy, Valentin
|0 P:(DE-Juel1)131964
|b 24
|u fzj
700 1 _ |a Gabrielian, Andrei
|b 25
700 1 _ |a Hurt, Darrell E.
|b 26
700 1 _ |a Nikonenko, Boris
|b 27
700 1 _ |a Majorov, Konstantin
|b 28
700 1 _ |a Apt, Alexander
|b 29
700 1 _ |a Rosenthal, Alex
|b 30
700 1 _ |a Gilep, Andrei
|b 31
700 1 _ |a Borshchevskiy, Valentin
|0 P:(DE-Juel1)191126
|b 32
|e Corresponding author
700 1 _ |a Strushkevich, Natallia
|0 P:(DE-HGF)0
|b 33
|e Corresponding author
773 _ _ |a 10.1016/j.jmb.2020.166763
|g Vol. 433, no. 4, p. 166763 -
|0 PERI:(DE-600)1355192-9
|n 4
|p 166763 -
|t Journal of molecular biology
|v 433
|y 2021
|x 0022-2836
856 4 _ |u https://juser.fz-juelich.de/record/904319/files/2020.07.07.192294v1.full.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904319
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)176570
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 24
|6 P:(DE-Juel1)131964
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 32
|6 P:(DE-Juel1)191126
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MOL BIOL : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21