001     904321
005     20220103172057.0
024 7 _ |a 10.1016/j.bioorg.2021.104721
|2 doi
024 7 _ |a 0045-2068
|2 ISSN
024 7 _ |a 1090-2120
|2 ISSN
024 7 _ |a 2128/29689
|2 Handle
024 7 _ |a altmetric:103491508
|2 altmetric
024 7 _ |a pmid:33618255
|2 pmid
024 7 _ |a WOS:000636139600003
|2 WOS
037 _ _ |a FZJ-2021-05891
082 _ _ |a 540
100 1 _ |a Sushko, Tatsiana
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A new twist of rubredoxin function in M. tuberculosis
260 _ _ |a San Diego, Calif.
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640940554_23406
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Electron transfer mediated by metalloproteins drives many biological processes. Rubredoxins are a ubiquitous [1Fe-0S] class of electron carriers that play an important role in bacterial adaptation to changing environmental conditions. In Mycobacterium tuberculosis, oxidative and acidic stresses as well as iron starvation induce rubredoxins expression. However, their functions during M. tuberculosis infection are unknown. In the present work, we show that rubredoxin B (RubB) is able to efficiently shuttle electrons from cognate reductases, FprA and FdR to support catalytic activity of cytochrome P450s, CYP124, CYP125, and CYP142, which are important for bacterial viability and pathogenicity. We solved the crystal structure of RubB and characterized the interaction between RubB and CYPs using site-directed mutagenesis. Mutations that not only neutralize single charge but also change the specific residues on the surface of RubB did not dramatically decrease activity of studied CYPs. Together with isothermal calorimetry (ITC) experiments, the obtained results suggest that interactions are transient and not highly specific. The redox potential of RubB is −264 mV vs. Ag/AgCl and the measured extinction coefficients are 9931 M−1cm−1 and 8371 M−1cm−1 at 380 nm and 490 nm, respectively. Characteristic parameters of RubB along with the discovered function might be useful for biotechnological applications. Our findings suggest that a switch from ferredoxins to rubredoxins might be crucial for M. tuberculosis to support CYPs activity during the infection.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kavaleuski, Anton
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Grabovec, Irina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kavaleuskaya, Anna
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Vakhrameev, Daniil
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bukhdruker, Sergey
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Marin, Egor
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kuzikov, Alexey
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Shumyantseva, Victoria
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Masamrekh, Rami
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Tsumoto, Kouhei
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Borshchevskiy, Valentin
|0 P:(DE-Juel1)191126
|b 11
|u fzj
700 1 _ |a Strushkevich, Natallia
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Gilep, Andrei
|0 P:(DE-HGF)0
|b 13
|e Corresponding author
773 _ _ |a 10.1016/j.bioorg.2021.104721
|g Vol. 109, p. 104721 -
|0 PERI:(DE-600)1462232-4
|p 104721 -
|t Bioorganic chemistry
|v 109
|y 2021
|x 0045-2068
856 4 _ |u https://juser.fz-juelich.de/record/904321/files/2020.10.27.356691v1.full.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904321
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)191126
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOORG CHEM : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21