000904322 001__ 904322
000904322 005__ 20230113085401.0
000904322 0247_ $$2doi$$a10.1021/acs.jpcb.1c03772
000904322 0247_ $$2ISSN$$a1089-5647
000904322 0247_ $$2ISSN$$a1520-5207
000904322 0247_ $$2ISSN$$a1520-6106
000904322 0247_ $$2pmid$$a34260239
000904322 0247_ $$2WOS$$aWOS:000680434200029
000904322 037__ $$aFZJ-2021-05892
000904322 082__ $$a530
000904322 1001_ $$0P:(DE-HGF)0$$aSindram, Julian$$b0
000904322 245__ $$aVersatile Route toward Hydrophobically Polymer-Grafted Gold Nanoparticles from Aqueous Dispersions
000904322 260__ $$aWashington, DC$$bSoc.$$c2021
000904322 3367_ $$2DRIVER$$aarticle
000904322 3367_ $$2DataCite$$aOutput Types/Journal article
000904322 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1672811119_19577
000904322 3367_ $$2BibTeX$$aARTICLE
000904322 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904322 3367_ $$00$$2EndNote$$aJournal Article
000904322 520__ $$aStabilization of gold nanoparticles in organic solvents is a key challenge in making them available for a wider range of material applications. Polymers are often used as stabilizing ligands because they also allow for the introduction of new properties and functionalities. Many of the established synthesis protocols for gold nanoparticles are water-based. However, the insolubility of many synthetic polymers in water renders the direct functionalization of aqueous particle dispersions with these ligands difficult. Here, we report on an approach for the functionalization of gold nanoparticles, which were prepared by aqueous synthesis, with hydrophobic polymer ligands and their characterization in nonpolar, organic dispersions. Our method employs an auxiliary ligand to first transfer gold nanoparticles from an aqueous to an organic medium. In the organic phase, the auxiliary ligand is then displaced by thiolated polystyrene ligands to form a dense polymer brush on the particle surface. We characterize the structure of the ligand shell using electron microscopy, scattering techniques, and ultracentrifugation and analyze the influence of the molecular weight of the polystyrene ligands on the structure of the polymer brush. We further investigate the colloidal stability of polystyrene-functionalized gold nanoparticles in various organic solvents. Finally, we extend the use of our protocol from small, spherical gold nanoparticles to larger gold nanorods and nanocubes.
000904322 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000904322 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904322 7001_ $$0P:(DE-HGF)0$$aKrüsmann, Marcel$$b1
000904322 7001_ $$0P:(DE-HGF)0$$aOtten, Marius$$b2
000904322 7001_ $$0P:(DE-Juel1)184822$$aPauly, Thomas$$b3$$ufzj
000904322 7001_ $$0P:(DE-Juel1)162443$$aNagel-Steger, Luitgard$$b4$$ufzj
000904322 7001_ $$00000-0002-6247-3976$$aKarg, Matthias$$b5$$eCorresponding author
000904322 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.1c03772$$gVol. 125, no. 29, p. 8225 - 8237$$n29$$p8225 - 8237$$tThe journal of physical chemistry <Washington, DC> / B$$v125$$x1089-5647$$y2021
000904322 8564_ $$uhttps://juser.fz-juelich.de/record/904322/files/acs.jpcb.1c03772-1.pdf$$yRestricted
000904322 909CO $$ooai:juser.fz-juelich.de:904322$$pVDB
000904322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184822$$aForschungszentrum Jülich$$b3$$kFZJ
000904322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162443$$aForschungszentrum Jülich$$b4$$kFZJ
000904322 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000904322 9141_ $$y2021
000904322 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000904322 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000904322 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-04
000904322 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-04
000904322 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000904322 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000904322 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000904322 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000904322 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000904322 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2019$$d2021-02-04
000904322 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000904322 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000904322 980__ $$ajournal
000904322 980__ $$aVDB
000904322 980__ $$aI:(DE-Juel1)IBI-7-20200312
000904322 980__ $$aUNRESTRICTED