001     904324
005     20220103172047.0
024 7 _ |a 10.1093/nar/gkab452
|2 doi
024 7 _ |a 0305-1048
|2 ISSN
024 7 _ |a 0309-1872
|2 ISSN
024 7 _ |a 1362-4954
|2 ISSN
024 7 _ |a 1362-4962
|2 ISSN
024 7 _ |a 2128/29693
|2 Handle
024 7 _ |a altmetric:108416932
|2 altmetric
024 7 _ |a pmid:34096600
|2 pmid
024 7 _ |a WOS:000671550100035
|2 WOS
037 _ _ |a FZJ-2021-05894
082 _ _ |a 570
100 1 _ |a Schmitz, Katharina
|0 P:(DE-HGF)0
|b 0
245 _ _ |a An essential role of the autophagy activating kinase ULK1 in snRNP biogenesis
260 _ _ |a Oxford
|c 2021
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640940875_23406
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The biogenesis of small uridine-rich nuclear ribonucleoproteins (UsnRNPs) depends on the methylation of Sm proteins catalyzed by the methylosome and the subsequent action of the SMN complex, which assembles the heptameric Sm protein ring onto small nuclear RNAs (snRNAs). In this sophisticated process, the methylosome subunit pICln (chloride conductance regulatory protein) is attributed to an exceptional key position as an ‘assembly chaperone’ by building up a stable precursor Sm protein ring structure. Here, we show that—apart from its autophagic role—the Ser/Thr kinase ULK1 (Uncoordinated [unc-51] Like Kinase 1) functions as a novel key regulator in UsnRNP biogenesis by phosphorylation of the C-terminus of pICln. As a consequence, phosphorylated pICln is no longer capable to hold up the precursor Sm ring structure. Consequently, inhibition of ULK1 results in a reduction of efficient UsnRNP core assembly. Thus ULK1, depending on its complex formation, exerts different functions in autophagy or snRNP biosynthesis.
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Cox, Jan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Esser, Lea Marie
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Voss, Martin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sander, Katja
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Löffler, Antje
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hillebrand, Frank
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Erkelenz, Steffen
|0 0000-0003-4763-1240
|b 7
700 1 _ |a Schaal, Heiner
|0 0000-0002-1636-4365
|b 8
700 1 _ |a Kähne, Thilo
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Klinker, Stefan
|0 P:(DE-Juel1)161261
|b 10
700 1 _ |a Zhang, Tao
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Nagel-Steger, Luitgard
|0 P:(DE-Juel1)162443
|b 12
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 13
700 1 _ |a Seggewiß, Sabine
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Schlütermann, David
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Stork, Björn
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Grimmler, Matthias
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Wesselborg, Sebastian
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Peter, Christoph
|0 0000-0002-0048-2279
|b 19
|e Corresponding author
773 _ _ |a 10.1093/nar/gkab452
|g Vol. 49, no. 11, p. 6437 - 6455
|0 PERI:(DE-600)1472175-2
|n 11
|p 6437 - 6455
|t Nucleic acids research
|v 49
|y 2021
|x 0301-5610
856 4 _ |u https://juser.fz-juelich.de/record/904324/files/gkab452.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904324
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)162443
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCLEIC ACIDS RES : 2019
|d 2021-05-04
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NUCLEIC ACIDS RES : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-05-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-05-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21