001     904325
005     20230113085400.0
024 7 _ |a 10.1134/S0006297921040039
|2 doi
024 7 _ |a 0006-2979
|2 ISSN
024 7 _ |a 1608-3040
|2 ISSN
024 7 _ |a 33941063
|2 pmid
024 7 _ |a WOS:000630849000001
|2 WOS
037 _ _ |a FZJ-2021-05895
082 _ _ |a 540
100 1 _ |a Rokitskaya, Tatyana I.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Rhodopsin Channel Activity Can Be Evaluated by Measuring the Photocurrent Voltage Dependence in Planar Bilayer Lipid Membranes
260 _ _ |a Dordrecht [u.a.]
|c 2021
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1672811170_19880
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The studies of the functional properties of retinal-containing proteins often include experiments in model membrane systems, e.g., measurements of electric current through planar bilayer lipid membranes (BLMs) with proteoliposomes adsorbed on one of the membrane surfaces. However, the possibilities of this method have not been fully explored yet. We demonstrated that the voltage dependence of stationary photocurrents for two light-sensitive proteins, bacteriorhodopsin (bR) and channelrhodopsin 2 (ChR2), in the presence of protonophore had very different characteristics. In the case of the bR (proton pump), the photocurrent through the BLM did not change direction when the polarity of the applied voltage was switched. In the case of the photosensitive channel protein ChR2, the photocurrent increased with the increase in voltage and the current polarity changed with the change in the voltage polarity. The protonophore 4,5,6,7-tetrachloro-2-trifluoromethyl benzimidazole (TTFB) was more efficient in the maximizing stationary photocurrents. In the presence of carbonyl cyanide-m-chlorophenylhydrazone (CCCP), the amplitude of the measured photocurrents for bR significantly decreased, while in the case of ChR2, the photocurrents virtually disappeared. The difference between the effects of TTFB and CCCP was apparently due to the fact that, in contrast to TTFB, CCCP transfers protons across the liposome membranes with a higher rate than through the decane-containing BLM used as a surface for the proteoliposome adsorption.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Maliar, Nina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kovalev, Kirill V.
|b 2
700 1 _ |a Volkov, Oleksandr
|0 P:(DE-Juel1)170083
|b 3
700 1 _ |a Gordeliy, Valentin I.
|0 P:(DE-Juel1)131964
|b 4
|u fzj
700 1 _ |a Antonenko, Yuri N.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1134/S0006297921040039
|g Vol. 86, no. 4, p. 409 - 419
|0 PERI:(DE-600)2052499-7
|n 4
|p 409 - 419
|t Biochemistry (Moscow)
|v 86
|y 2021
|x 0006-2979
856 4 _ |u https://juser.fz-juelich.de/record/904325/files/Rokitskaya2021_Article_RhodopsinChannelActivityCanBeE.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:904325
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131964
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2021
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOCHEMISTRY-MOSCOW+ : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21