Home > Publications database > Clustering polymorphs of tau and IAPP fibrils with the CHEP algorithm > print |
001 | 904328 | ||
005 | 20230113085358.0 | ||
024 | 7 | _ | |a 10.1016/j.pbiomolbio.2020.11.007 |2 doi |
024 | 7 | _ | |a 0079-6107 |2 ISSN |
024 | 7 | _ | |a 1873-1732 |2 ISSN |
024 | 7 | _ | |a 33556421 |2 pmid |
024 | 7 | _ | |a WOS:000632013800004 |2 WOS |
037 | _ | _ | |a FZJ-2021-05898 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Pothula, Karunakar R. |0 P:(DE-Juel1)174468 |b 0 |u fzj |
245 | _ | _ | |a Clustering polymorphs of tau and IAPP fibrils with the CHEP algorithm |
260 | _ | _ | |a Amsterdam [u.a.] |c 2021 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1672811212_19577 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Recent steps towards automation have improved the quality and efficiency of the entire cryo-electron microscopy workflow, from sample preparation to image processing. Most of the image processing steps are now quite automated, but there are still a few steps which need the specific intervention of researchers. One such step is the identification and separation of helical protein polymorphs at early stages of image processing. Here, we tested and evaluated our recent clustering approach on three datasets containing amyloid fibrils, demonstrating that the proposed unsupervised clustering method automatically and effectively identifies the polymorphs from cryo-EM images. As an automated polymorph separation method, it has the potential to complement automated helical picking, which typically cannot easily distinguish between polymorphs with subtle differences in morphology, and is therefore a useful tool for the image processing and structure determination of helical proteins. |
536 | _ | _ | |a 5244 - Information Processing in Neuronal Networks (POF4-524) |0 G:(DE-HGF)POF4-5244 |c POF4-524 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Geraets, James A. |0 P:(DE-Juel1)176479 |b 1 |u fzj |
700 | 1 | _ | |a Ferber, Inda I. |0 0000-0001-7415-4879 |b 2 |
700 | 1 | _ | |a Schröder, Gunnar F. |0 P:(DE-Juel1)132018 |b 3 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.pbiomolbio.2020.11.007 |g Vol. 160, p. 16 - 25 |0 PERI:(DE-600)1498578-0 |p 16 - 25 |t Progress in biophysics & molecular biology |v 160 |y 2021 |x 0079-6107 |
909 | C | O | |o oai:juser.fz-juelich.de:904328 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)174468 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)176479 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)132018 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5244 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1120 |2 StatID |b BIOSIS Reviews Reports And Meetings |d 2021-01-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PROG BIOPHYS MOL BIO : 2019 |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-27 |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-7-20200312 |k IBI-7 |l Strukturbiochemie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|