000904329 001__ 904329
000904329 005__ 20220103172035.0
000904329 0247_ $$2doi$$a10.1039/D0SC04657D
000904329 0247_ $$2ISSN$$a2041-6520
000904329 0247_ $$2ISSN$$a2041-6539
000904329 0247_ $$2Handle$$a2128/29694
000904329 0247_ $$2altmetric$$aaltmetric:107117409
000904329 0247_ $$2pmid$$apmid:34040740
000904329 0247_ $$2WOS$$aWOS:000640200800001
000904329 037__ $$aFZJ-2021-05899
000904329 082__ $$a540
000904329 1001_ $$0P:(DE-Juel1)178751$$aPaul, Arghadwip$$b0
000904329 245__ $$aThermodynamics and kinetics of the amyloid-β peptide revealed by Markov state models based on MD data in agreement with experiment
000904329 260__ $$aCambridge$$bRSC$$c2021
000904329 3367_ $$2DRIVER$$aarticle
000904329 3367_ $$2DataCite$$aOutput Types/Journal article
000904329 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640941160_7048
000904329 3367_ $$2BibTeX$$aARTICLE
000904329 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904329 3367_ $$00$$2EndNote$$aJournal Article
000904329 520__ $$aThe amlyoid-β peptide (Aβ) is closely linked to the development of Alzheimer's disease. Molecular dynamics (MD) simulations have become an indispensable tool for studying the behavior of this peptide at the atomistic level. General key aspects of MD simulations are the force field used for modeling the peptide and its environment, which is important for accurate modeling of the system of interest, and the length of the simulations, which determines whether or not equilibrium is reached. In this study we address these points by analyzing 30-μs MD simulations acquired for Aβ40 using seven different force fields. We assess the convergence of these simulations based on the convergence of various structural properties and of NMR and fluorescence spectroscopic observables. Moreover, we calculate Markov state models for the different MD simulations, which provide an unprecedented view of the thermodynamics and kinetics of the amyloid-β peptide. This further allows us to provide answers for pertinent questions, like: which force fields are suitable for modeling Aβ? (a99SB-UCB and a99SB-ILDN/TIP4P-D); what does Aβ peptide really look like? (mostly extended and disordered) and; how long does it take MD simulations of Aβ to attain equilibrium? (at least 20–30 μs). We believe the analyses presented in this study will provide a useful reference guide for important questions relating to the structure and dynamics of Aβ in particular, and by extension other similar disordered proteins.
000904329 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000904329 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904329 7001_ $$0P:(DE-Juel1)176383$$aSamantray, Suman$$b1
000904329 7001_ $$0P:(DE-HGF)0$$aAnteghini, Marco$$b2
000904329 7001_ $$0P:(DE-Juel1)180535$$aKhaled, Mohammed$$b3
000904329 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b4$$eCorresponding author
000904329 773__ $$0PERI:(DE-600)2559110-1$$a10.1039/D0SC04657D$$gVol. 12, no. 19, p. 6652 - 6669$$n19$$p6652 - 6669$$tChemical science$$v12$$x2041-6520$$y2021
000904329 8564_ $$uhttps://juser.fz-juelich.de/record/904329/files/d0sc04657d.pdf$$yOpenAccess
000904329 909CO $$ooai:juser.fz-juelich.de:904329$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904329 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180535$$aForschungszentrum Jülich$$b3$$kFZJ
000904329 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b4$$kFZJ
000904329 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000904329 9141_ $$y2021
000904329 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000904329 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000904329 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM SCI : 2019$$d2021-01-29
000904329 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-29
000904329 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000904329 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000904329 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-29
000904329 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29
000904329 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000904329 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000904329 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM SCI : 2019$$d2021-01-29
000904329 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904329 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29
000904329 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-29
000904329 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-29$$wger
000904329 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000904329 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-29
000904329 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000904329 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000904329 980__ $$ajournal
000904329 980__ $$aVDB
000904329 980__ $$aUNRESTRICTED
000904329 980__ $$aI:(DE-Juel1)IBI-7-20200312
000904329 9801_ $$aFullTexts