001     904333
005     20220103172054.0
024 7 _ |a 10.1038/s41592-020-01051-w
|2 doi
024 7 _ |a 1548-7091
|2 ISSN
024 7 _ |a 1548-7105
|2 ISSN
024 7 _ |a 2128/29696
|2 Handle
024 7 _ |a altmetric:99412179
|2 altmetric
024 7 _ |a pmid:33542514
|2 pmid
024 7 _ |a WOS:000614686600012
|2 WOS
037 _ _ |a FZJ-2021-05903
082 _ _ |a 610
100 1 _ |a Lawson, Catherine L.
|0 0000-0002-3261-7035
|b 0
|e Corresponding author
245 _ _ |a Cryo-EM model validation recommendations based on outcomes of the 2019 EMDataResource challenge
260 _ _ |a London [u.a.]
|c 2021
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640941397_14773
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper describes outcomes of the 2019 Cryo-EM Model Challenge. The goals were to (1) assess the quality of models that can be produced from cryogenic electron microscopy (cryo-EM) maps using current modeling software, (2) evaluate reproducibility of modeling results from different software developers and users and (3) compare performance of current metrics used for model evaluation, particularly Fit-to-Map metrics, with focus on near-atomic resolution. Our findings demonstrate the relatively high accuracy and reproducibility of cryo-EM models derived by 13 participating teams from four benchmark maps, including three forming a resolution series (1.8 to 3.1 Å). The results permit specific recommendations to be made about validating near-atomic cryo-EM structures both in the context of individual experiments and structure data archives such as the Protein Data Bank. We recommend the adoption of multiple scoring parameters to provide full and objective annotation and assessment of the model, reflective of the observed cryo-EM map density.
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kryshtafovych, Andriy
|0 0000-0001-5066-7178
|b 1
700 1 _ |a Adams, Paul D.
|0 0000-0001-9333-8219
|b 2
700 1 _ |a Afonine, Pavel V.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Baker, Matthew L.
|0 0000-0001-9039-8523
|b 4
700 1 _ |a Barad, Benjamin A.
|0 0000-0002-1016-862X
|b 5
700 1 _ |a Bond, Paul
|0 0000-0002-8465-4823
|b 6
700 1 _ |a Burnley, Tom
|0 0000-0001-5307-348X
|b 7
700 1 _ |a Cao, Renzhi
|0 0000-0002-8345-343X
|b 8
700 1 _ |a Cheng, Jianlin
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Chojnowski, Grzegorz
|0 0000-0002-3796-8352
|b 10
700 1 _ |a Cowtan, Kevin
|0 0000-0002-0189-1437
|b 11
700 1 _ |a Dill, Ken A.
|0 0000-0002-2390-2002
|b 12
700 1 _ |a DiMaio, Frank
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Farrell, Daniel P.
|0 0000-0001-7024-7998
|b 14
700 1 _ |a Fraser, James S.
|0 0000-0002-5080-2859
|b 15
700 1 _ |a Herzik, Mark A.
|0 0000-0001-6653-6682
|b 16
700 1 _ |a Hoh, Soon Wen
|0 0000-0003-1039-8000
|b 17
700 1 _ |a Hou, Jie
|0 0000-0002-8584-5154
|b 18
700 1 _ |a Hung, Li-Wei
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Igaev, Maxim
|0 0000-0001-8781-1604
|b 20
700 1 _ |a Joseph, Agnel P.
|0 0000-0002-0997-8422
|b 21
700 1 _ |a Kihara, Daisuke
|0 0000-0003-4091-6614
|b 22
700 1 _ |a Kumar, Dilip
|0 0000-0002-2721-678X
|b 23
700 1 _ |a Mittal, Sumit
|0 0000-0002-5360-8947
|b 24
700 1 _ |a Monastyrskyy, Bohdan
|0 0000-0002-4803-0378
|b 25
700 1 _ |a Olek, Mateusz
|0 0000-0002-6347-9587
|b 26
700 1 _ |a Palmer, Colin M.
|0 0000-0002-4883-1546
|b 27
700 1 _ |a Patwardhan, Ardan
|0 0000-0001-7663-9028
|b 28
700 1 _ |a Perez, Alberto
|0 0000-0002-5054-5338
|b 29
700 1 _ |a Pfab, Jonas
|0 0000-0002-8285-571X
|b 30
700 1 _ |a Pintilie, Grigore D.
|0 0000-0002-0848-5335
|b 31
700 1 _ |a Richardson, Jane S.
|0 0000-0002-3311-2944
|b 32
700 1 _ |a Rosenthal, Peter B.
|0 0000-0002-0387-2862
|b 33
700 1 _ |a Sarkar, Daipayan
|0 0000-0002-4167-2108
|b 34
700 1 _ |a Schäfer, Luisa U.
|0 P:(DE-Juel1)178773
|b 35
700 1 _ |a Schmid, Michael F.
|0 0000-0003-1077-5750
|b 36
700 1 _ |a Schröder, Gunnar F.
|0 P:(DE-Juel1)132018
|b 37
700 1 _ |a Shekhar, Mrinal
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Si, Dong
|0 0000-0001-7039-2589
|b 39
700 1 _ |a Singharoy, Abishek
|0 0000-0002-9000-2397
|b 40
700 1 _ |a Terashi, Genki
|0 0000-0002-5339-909X
|b 41
700 1 _ |a Terwilliger, Thomas C.
|0 0000-0001-6384-0320
|b 42
700 1 _ |a Vaiana, Andrea
|0 0000-0002-8865-0651
|b 43
700 1 _ |a Wang, Liguo
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Wang, Zhe
|0 P:(DE-Juel1)138909
|b 45
700 1 _ |a Wankowicz, Stephanie A.
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Williams, Christopher J.
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Winn, Martyn
|0 0000-0003-0496-6796
|b 48
700 1 _ |a Wu, Tianqi
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Yu, Xiaodi
|0 0000-0001-7520-0646
|b 50
700 1 _ |a Zhang, Kaiming
|0 0000-0003-0414-4776
|b 51
700 1 _ |a Berman, Helen M.
|0 0000-0002-3337-0660
|b 52
700 1 _ |a Chiu, Wah
|0 0000-0002-8910-3078
|b 53
|e Corresponding author
773 _ _ |a 10.1038/s41592-020-01051-w
|g Vol. 18, no. 2, p. 156 - 164
|0 PERI:(DE-600)2163081-1
|n 2
|p 156 - 164
|t Nature methods
|v 18
|y 2021
|x 1548-7091
856 4 _ |u https://juser.fz-juelich.de/record/904333/files/s41592-020-01051-w.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:904333
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 35
|6 P:(DE-Juel1)178773
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 37
|6 P:(DE-Juel1)132018
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT METHODS : 2019
|d 2021-02-03
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT METHODS : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21