000904338 001__ 904338 000904338 005__ 20230123101853.0 000904338 0247_ $$2doi$$a10.1021/acsapm.0c01071 000904338 0247_ $$2WOS$$aWOS:000609249200027 000904338 037__ $$aFZJ-2021-05908 000904338 082__ $$a540 000904338 1001_ $$00000-0003-4289-2943$$aZips, Sabine$$b0 000904338 245__ $$aBiocompatible, Flexible, and Oxygen-Permeable Silicone-Hydrogel Material for Stereolithographic Printing of Microfluidic Lab-On-A-Chip and Cell-Culture Devices 000904338 260__ $$aWashington, DC$$bACS Publications$$c2021 000904338 3367_ $$2DRIVER$$aarticle 000904338 3367_ $$2DataCite$$aOutput Types/Journal article 000904338 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671619980_31167 000904338 3367_ $$2BibTeX$$aARTICLE 000904338 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000904338 3367_ $$00$$2EndNote$$aJournal Article 000904338 520__ $$aWe present a photocurable, biocompatible, and flexible silicone-hydrogel hybrid material for stereolithographic (SLA) printing of biomedical devices. The silicone-hydrogel polymer is similar to mixtures used for contact lenses. It is flexible and stretchable with a Young’s modulus of 78 MPa and a maximum elongation at break of 51%, shows a low degree of swelling (<4% v/v) in water, and can be bonded easily to flat glass substrates via a surface-modification method. The in vitro cytotoxicity of the material is assessed with a WST-8 cell viability assay using five different cell lines: HT1080, L929, and Hs27 fibroblasts, cardiomyocyte-like HL-1 cells, and neuronal-phenotype PC-12 cells. On this account, the silicone-hydrogel polymer is compared to several other common SLA printing materials used for cell-culture applications and polydimethylsiloxane (PDMS). A simple extraction step in water is sufficient for reaching biocompatibility of the material with respect to the tested cell types. The oxygen permeability of the silicone-hydrogel material is investigated and compared to that of PDMS, Medicalprint clear—a commercial resin for medical products, and a short-chain hydrogel-based resin. As a proof of concept, we demonstrate a 3D-printed microfluidic device with integrated valves and mixers. Furthermore, we show a printed culture chamber for analyzing signal propagation in HL-1 cardiomyocyte cell networks. Ca2+ imaging is used to observe the signal propagation through the cardiac cell layers grown in the microchannels. The cells are shown to maintain normal electrophysiological activity within the printed chambers. Overall, the biocompatible silicone-hydrogel material will be an advancement for SLA printing in cell-culture and microfluidic lab-on-a-chip applications. 000904338 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0 000904338 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000904338 7001_ $$0P:(DE-HGF)0$$aHiendlmeier, Lukas$$b1 000904338 7001_ $$00000-0002-6943-737X$$aWeiß, Lennart Jakob Konstantin$$b2 000904338 7001_ $$0P:(DE-HGF)0$$aUrl, Heike$$b3 000904338 7001_ $$00000-0002-9462-7167$$aTeshima, Tetsuhiko F.$$b4 000904338 7001_ $$0P:(DE-HGF)0$$aSchmid, Richard$$b5 000904338 7001_ $$0P:(DE-HGF)0$$aEblenkamp, Markus$$b6 000904338 7001_ $$00000-0001-6503-076X$$aMela, Petra$$b7 000904338 7001_ $$0P:(DE-Juel1)128745$$aWolfrum, Bernhard$$b8$$eCorresponding author 000904338 773__ $$0PERI:(DE-600)2949098-4$$a10.1021/acsapm.0c01071$$gVol. 3, no. 1, p. 243 - 258$$n1$$p243 - 258$$tACS applied polymer materials$$v3$$x2637-6105$$y2021 000904338 8564_ $$uhttps://juser.fz-juelich.de/record/904338/files/acsapm.0c01071.pdf$$yRestricted 000904338 909CO $$ooai:juser.fz-juelich.de:904338$$pVDB 000904338 9101_ $$0I:(DE-HGF)0$$60000-0003-4289-2943$$aExternal Institute$$b0$$kExtern 000904338 9101_ $$0I:(DE-HGF)0$$60000-0002-6943-737X$$aExternal Institute$$b2$$kExtern 000904338 9101_ $$0I:(DE-HGF)0$$60000-0002-9462-7167$$aExternal Institute$$b4$$kExtern 000904338 9101_ $$0I:(DE-HGF)0$$60000-0001-6503-076X$$aExternal Institute$$b7$$kExtern 000904338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128745$$aForschungszentrum Jülich$$b8$$kFZJ 000904338 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0 000904338 9141_ $$y2022 000904338 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-12 000904338 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-12 000904338 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-09-12 000904338 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-12 000904338 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0 000904338 980__ $$ajournal 000904338 980__ $$aVDB 000904338 980__ $$aI:(DE-Juel1)IBI-3-20200312 000904338 980__ $$aUNRESTRICTED