000904341 001__ 904341
000904341 005__ 20230328130135.0
000904341 0247_ $$2doi$$a10.1021/acsabm.1c00576
000904341 0247_ $$2pmid$$a35006867
000904341 0247_ $$2WOS$$aWOS:000687042400043
000904341 037__ $$aFZJ-2021-05911
000904341 082__ $$a570
000904341 1001_ $$0P:(DE-Juel1)165172$$aWolf, Nikolaus$$b0
000904341 245__ $$aMechanical and Electronic Cell–Chip Interaction of APTES-Functionalized Neuroelectronic Interfaces
000904341 260__ $$aWashington, DC$$bACS Publications$$c2021
000904341 3367_ $$2DRIVER$$aarticle
000904341 3367_ $$2DataCite$$aOutput Types/Journal article
000904341 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1679056359_31666
000904341 3367_ $$2BibTeX$$aARTICLE
000904341 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904341 3367_ $$00$$2EndNote$$aJournal Article
000904341 520__ $$aIn this work, we analyze the impact of a chip coating with a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) on the electronic and mechanical properties of neuroelectronic interfaces. We show that the large signal transfer, which has been observed for these interfaces, is most likely a consequence of the strong mechanical coupling between cells and substrate. On the one hand, we demonstrate that the impedance of the interface between Pt electrodes and an electrolyte is slightly reduced by the APTES SAM. However, this reduction of approximately 13% is definitely not sufficient to explain the large signal transfer of APTES coated electrodes demonstrated previously. On the other hand, the APTES coating leads to a stronger mechanical clamping of the cells, which is visible in microscopic images of the cell development of APTES-coated substrates. This stronger mechanical interaction is most likely caused by the positively charged amino functional group of the APTES SAM. It seems to lead to a smaller cleft between substrate and cells and, thus, to reduced losses of the cell’s action potential signal at the electrode. The disadvantage of this tight binding of the cells to the rigid, planar substrate seems to be the short lifetime of the cells. In our case the density of living cells starts to decrease together with the visual deformation of the cells typically at DIV 9. Solutions for this problem might be the use of soft substrates and/or the replacement of the short APTES molecules with larger molecules or molecular multilayers.
000904341 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000904341 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904341 7001_ $$0P:(DE-Juel1)180331$$aRai, Pratika$$b1
000904341 7001_ $$0P:(DE-Juel1)177033$$aGlass, Manuel$$b2
000904341 7001_ $$0P:(DE-Juel1)169481$$aMilos, Frano$$b3
000904341 7001_ $$0P:(DE-Juel1)128705$$aMaybeck, Vanessa$$b4
000904341 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b5$$eCorresponding author
000904341 7001_ $$0P:(DE-Juel1)128749$$aWördenweber, Roger$$b6
000904341 773__ $$0PERI:(DE-600)2936886-8$$a10.1021/acsabm.1c00576$$gVol. 4, no. 8, p. 6326 - 6337$$n8$$p6326 - 6337$$tACS applied bio materials$$v4$$x2576-6422$$y2021
000904341 8564_ $$uhttps://juser.fz-juelich.de/record/904341/files/acsabm.1c00576.pdf$$yRestricted
000904341 909CO $$ooai:juser.fz-juelich.de:904341$$pVDB
000904341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165172$$aForschungszentrum Jülich$$b0$$kFZJ
000904341 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165172$$a IBI-3$$b0
000904341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180331$$aForschungszentrum Jülich$$b1$$kFZJ
000904341 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)180331$$a IBI-3$$b1
000904341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177033$$aForschungszentrum Jülich$$b2$$kFZJ
000904341 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177033$$a IBI-3$$b2
000904341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169481$$aForschungszentrum Jülich$$b3$$kFZJ
000904341 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)169481$$a IBI-3$$b3
000904341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128705$$aForschungszentrum Jülich$$b4$$kFZJ
000904341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b5$$kFZJ
000904341 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128749$$aForschungszentrum Jülich$$b6$$kFZJ
000904341 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000904341 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000904341 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000904341 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
000904341 980__ $$ajournal
000904341 980__ $$aVDB
000904341 980__ $$aI:(DE-Juel1)IBI-3-20200312
000904341 980__ $$aUNRESTRICTED