001     904341
005     20230328130135.0
024 7 _ |a 10.1021/acsabm.1c00576
|2 doi
024 7 _ |a 35006867
|2 pmid
024 7 _ |a WOS:000687042400043
|2 WOS
037 _ _ |a FZJ-2021-05911
082 _ _ |a 570
100 1 _ |a Wolf, Nikolaus
|0 P:(DE-Juel1)165172
|b 0
245 _ _ |a Mechanical and Electronic Cell–Chip Interaction of APTES-Functionalized Neuroelectronic Interfaces
260 _ _ |a Washington, DC
|c 2021
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1679056359_31666
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this work, we analyze the impact of a chip coating with a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) on the electronic and mechanical properties of neuroelectronic interfaces. We show that the large signal transfer, which has been observed for these interfaces, is most likely a consequence of the strong mechanical coupling between cells and substrate. On the one hand, we demonstrate that the impedance of the interface between Pt electrodes and an electrolyte is slightly reduced by the APTES SAM. However, this reduction of approximately 13% is definitely not sufficient to explain the large signal transfer of APTES coated electrodes demonstrated previously. On the other hand, the APTES coating leads to a stronger mechanical clamping of the cells, which is visible in microscopic images of the cell development of APTES-coated substrates. This stronger mechanical interaction is most likely caused by the positively charged amino functional group of the APTES SAM. It seems to lead to a smaller cleft between substrate and cells and, thus, to reduced losses of the cell’s action potential signal at the electrode. The disadvantage of this tight binding of the cells to the rigid, planar substrate seems to be the short lifetime of the cells. In our case the density of living cells starts to decrease together with the visual deformation of the cells typically at DIV 9. Solutions for this problem might be the use of soft substrates and/or the replacement of the short APTES molecules with larger molecules or molecular multilayers.
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rai, Pratika
|0 P:(DE-Juel1)180331
|b 1
700 1 _ |a Glass, Manuel
|0 P:(DE-Juel1)177033
|b 2
700 1 _ |a Milos, Frano
|0 P:(DE-Juel1)169481
|b 3
700 1 _ |a Maybeck, Vanessa
|0 P:(DE-Juel1)128705
|b 4
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 5
|e Corresponding author
700 1 _ |a Wördenweber, Roger
|0 P:(DE-Juel1)128749
|b 6
773 _ _ |a 10.1021/acsabm.1c00576
|g Vol. 4, no. 8, p. 6326 - 6337
|0 PERI:(DE-600)2936886-8
|n 8
|p 6326 - 6337
|t ACS applied bio materials
|v 4
|y 2021
|x 2576-6422
856 4 _ |u https://juser.fz-juelich.de/record/904341/files/acsabm.1c00576.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:904341
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165172
910 1 _ |a IBI-3
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)165172
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180331
910 1 _ |a IBI-3
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)180331
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177033
910 1 _ |a IBI-3
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)177033
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)169481
910 1 _ |a IBI-3
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)169481
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128705
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128713
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128749
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-03
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-3-20200312
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21