000904347 001__ 904347
000904347 005__ 20230123101839.0
000904347 0247_ $$2doi$$a10.3390/s21123981
000904347 0247_ $$2Handle$$a2128/33193
000904347 0247_ $$2pmid$$a34207725
000904347 0247_ $$2WOS$$aWOS:000667881000001
000904347 037__ $$aFZJ-2021-05917
000904347 082__ $$a620
000904347 1001_ $$00000-0002-2696-7725$$aGrob, Leroy$$b0
000904347 245__ $$aInkjet-Printed and Electroplated 3D Electrodes for Recording Extracellular Signals in Cell Culture
000904347 260__ $$aBasel$$bMDPI$$c2021
000904347 3367_ $$2DRIVER$$aarticle
000904347 3367_ $$2DataCite$$aOutput Types/Journal article
000904347 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671205013_23721
000904347 3367_ $$2BibTeX$$aARTICLE
000904347 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904347 3367_ $$00$$2EndNote$$aJournal Article
000904347 520__ $$aRecent investigations into cardiac or nervous tissues call for systems that are able to electrically record in 3D as opposed to 2D. Typically, challenging microfabrication steps are required to produce 3D microelectrode arrays capable of recording at the desired position within the tissue of interest. As an alternative, additive manufacturing is becoming a versatile platform for rapidly prototyping novel sensors with flexible geometric design. In this work, 3D MEAs for cell-culture applications were fabricated using a piezoelectric inkjet printer. The aspect ratio and height of the printed 3D electrodes were user-defined by adjusting the number of deposited droplets of silver nanoparticle ink along with a continuous printing method and an appropriate drop-to-drop delay. The Ag 3D MEAs were later electroplated with Au and Pt in order to reduce leakage of potentially cytotoxic silver ions into the cellular medium. The functionality of the array was confirmed using impedance spectroscopy, cyclic voltammetry, and recordings of extracellular potentials from cardiomyocyte-like HL-1 cell
000904347 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000904347 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904347 7001_ $$0P:(DE-Juel1)140264$$aRinklin, Philipp$$b1
000904347 7001_ $$0P:(DE-HGF)0$$aZips, Sabine$$b2
000904347 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b3
000904347 7001_ $$0P:(DE-Juel1)161523$$aWeidlich, Sabrina$$b4
000904347 7001_ $$0P:(DE-HGF)0$$aTerkan, Korkut$$b5
000904347 7001_ $$00000-0002-6943-737X$$aWeiß, Lennart J. K.$$b6
000904347 7001_ $$0P:(DE-Juel1)161548$$aAdly, Nouran$$b7
000904347 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b8
000904347 7001_ $$0P:(DE-Juel1)128745$$aWolfrum, Bernhard$$b9$$eCorresponding author
000904347 773__ $$0PERI:(DE-600)2052857-7$$a10.3390/s21123981$$gVol. 21, no. 12, p. 3981 -$$n12$$p3981 -$$tSensors$$v21$$x1424-8220$$y2021
000904347 8564_ $$uhttps://juser.fz-juelich.de/record/904347/files/sensors-21-03981-v2.pdf$$yOpenAccess
000904347 909CO $$ooai:juser.fz-juelich.de:904347$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904347 9101_ $$0I:(DE-HGF)0$$60000-0002-2696-7725$$aExternal Institute$$b0$$kExtern
000904347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140264$$aForschungszentrum Jülich$$b1$$kFZJ
000904347 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)140264$$a IBI-3$$b1
000904347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b3$$kFZJ
000904347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161523$$aForschungszentrum Jülich$$b4$$kFZJ
000904347 9101_ $$0I:(DE-HGF)0$$60000-0002-6943-737X$$aExternal Institute$$b6$$kExtern
000904347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161548$$aForschungszentrum Jülich$$b7$$kFZJ
000904347 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)161548$$a IBI-3$$b7
000904347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b8$$kFZJ
000904347 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128745$$aForschungszentrum Jülich$$b9$$kFZJ
000904347 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000904347 9141_ $$y2022
000904347 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000904347 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000904347 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904347 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000904347 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSENSORS-BASEL : 2019$$d2021-05-04
000904347 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000904347 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000904347 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000904347 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000904347 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000904347 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000904347 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904347 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000904347 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000904347 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000904347 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000904347 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000904347 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
000904347 9801_ $$aFullTexts
000904347 980__ $$ajournal
000904347 980__ $$aVDB
000904347 980__ $$aUNRESTRICTED
000904347 980__ $$aI:(DE-Juel1)IBI-3-20200312