001     904354
005     20240624104530.0
024 7 _ |a 10.1016/j.bios.2021.113204
|2 doi
024 7 _ |a 0956-5663
|2 ISSN
024 7 _ |a 1873-4235
|2 ISSN
024 7 _ |a 33836429
|2 pmid
024 7 _ |a WOS:000647774000001
|2 WOS
037 _ _ |a FZJ-2021-05924
082 _ _ |a 610
100 1 _ |a Molinnus, Denise
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718109487_32316
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In modern days, there is an increasing relevance of and demand for flexible and biocompatible sensors for in-vivo and epidermal applications. One promising strategy is the implementation of biological (natural) polymers, which offer new opportunities for flexible biosensor devices due to their high biocompatibility and adjustable biodegradability. As a proof-of-concept experiment, a biosensor was fabricated by combining thin- (for Pt working- and counter electrode) and thick-film (for Ag/AgCl quasi-reference electrode) technologies: The biosensor consists of a fully bio-based and biodegradable fibroin substrate derived from silk fibroin of the silkworm Bombyx mori combined with immobilized enzyme glucose oxidase. The flexible glucose biosensor is encapsulated by a biocompatible silicon rubber which is certificated for a safe use onto human skin. Characterization of the sensor set-up is exemplarily demonstrated by glucose measurements in buffer and Ringer's solution, while the stability of the quasi-reference electrode has been investigated versus a commercial Ag/AgCl reference electrode. Repeated bending studies validated the mechanical properties of the electrode structures. The cross-sensitivity of the biosensor against ascorbic acid, noradrenaline and adrenaline was investigated, too. Additionally, biocompatibility and degradation tests of the silk fibroin with and without thin-film platinum electrodes were carried out.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Drinic, Aleksander
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Iken, Heiko
|0 P:(DE-Juel1)171708
|b 2
700 1 _ |a Kröger, Nadja
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zinser, Max
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Smeets, Ralf
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Köpf, Marius
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kopp, Alexander
|0 0000-0001-8787-0401
|b 7
700 1 _ |a Schöning, Michael J.
|0 P:(DE-Juel1)128727
|b 8
|e Corresponding author
773 _ _ |a 10.1016/j.bios.2021.113204
|g Vol. 183, p. 113204 -
|0 PERI:(DE-600)1496379-6
|p 113204 -
|t Biosensors and bioelectronics
|v 183
|y 2021
|x 0956-5663
856 4 _ |u https://juser.fz-juelich.de/record/904354/files/2021_Fibro_BiosensBioelectron.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:904354
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128727
910 1 _ |a IBI-3
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-Juel1)128727
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOSENS BIOELECTRON : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BIOSENS BIOELECTRON : 2019
|d 2021-01-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-3-20200312
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21