000904356 001__ 904356
000904356 005__ 20230123101848.0
000904356 0247_ $$2doi$$a10.1002/pssa.202000747
000904356 0247_ $$2ISSN$$a0031-8965
000904356 0247_ $$2ISSN$$a1521-396X
000904356 0247_ $$2ISSN$$a1862-6300
000904356 0247_ $$2ISSN$$a1862-6319
000904356 0247_ $$2Handle$$a2128/33179
000904356 0247_ $$2WOS$$aWOS:000613842900001
000904356 037__ $$aFZJ-2021-05926
000904356 082__ $$a530
000904356 1001_ $$00000-0001-6292-2279$$aOliveira, Danilo A.$$b0
000904356 245__ $$aBiosensor Based on Self‐Assembled Films of Graphene Oxide and Polyaniline Using a Field‐Effect Device Platform
000904356 260__ $$aWeinheim$$bWiley-VCH$$c2021
000904356 3367_ $$2DRIVER$$aarticle
000904356 3367_ $$2DataCite$$aOutput Types/Journal article
000904356 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671200799_21137
000904356 3367_ $$2BibTeX$$aARTICLE
000904356 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904356 3367_ $$00$$2EndNote$$aJournal Article
000904356 520__ $$aA new functionalization method to modify capacitive electrolyte–insulator–semiconductor (EIS) structures with nanofilms is presented. Layers of polyallylamine hydrochloride (PAH) and graphene oxide (GO) with the compound polyaniline:poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PANI:PAAMPSA) are deposited onto a p-Si/SiO2 chip using the layer-by-layer technique (LbL). Two different enzymes (urease and penicillinase) are separately immobilized on top of a five-bilayer stack of the PAH:GO/PANI:PAAMPSA-modified EIS chip, forming a biosensor for detection of urea and penicillin, respectively. Electrochemical characterization is performed by constant capacitance (ConCap) measurements, and the film morphology is characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). An increase in the average sensitivity of the modified biosensors (EIS–nanofilm–enzyme) of around 15% is found in relation to sensors, only carrying the enzyme but without the nanofilm (EIS–enzyme). In this sense, the nanofilm acts as a stable bioreceptor onto the EIS chip improving the output signal in terms of sensitivity and stability.
000904356 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000904356 588__ $$aDataset connected to DataCite
000904356 7001_ $$0P:(DE-HGF)0$$aMolinnus, Denise$$b1
000904356 7001_ $$0P:(DE-HGF)0$$aBeging, Stefan$$b2
000904356 7001_ $$0P:(DE-HGF)0$$aSiqueira, José R.$$b3
000904356 7001_ $$0P:(DE-Juel1)128727$$aSchöning, Michael J.$$b4$$eCorresponding author
000904356 773__ $$0PERI:(DE-600)1481091-8$$a10.1002/pssa.202000747$$gVol. 218, no. 13, p. 2000747 -$$n13$$p2000747 -$$tPhysica status solidi / A$$v218$$x0031-8965$$y2021
000904356 8564_ $$uhttps://juser.fz-juelich.de/record/904356/files/Physica%20Status%20Solidi%20a%20-%202021%20-%20Oliveira%20-%20Biosensor%20Based%20on%20Self%25u2010Assembled%20Films%20of%20Graphene%20Oxide%20and%20Polyaniline.pdf$$yOpenAccess
000904356 909CO $$ooai:juser.fz-juelich.de:904356$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904356 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128727$$aForschungszentrum Jülich$$b4$$kFZJ
000904356 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000904356 9141_ $$y2022
000904356 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000904356 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000904356 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-04
000904356 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000904356 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000904356 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-04$$wger
000904356 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000904356 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000904356 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000904356 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904356 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-04
000904356 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI A : 2019$$d2021-02-04
000904356 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000904356 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-04$$wger
000904356 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000904356 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
000904356 9801_ $$aFullTexts
000904356 980__ $$ajournal
000904356 980__ $$aVDB
000904356 980__ $$aUNRESTRICTED
000904356 980__ $$aI:(DE-Juel1)IBI-3-20200312