000904358 001__ 904358
000904358 005__ 20240223125852.0
000904358 0247_ $$2doi$$a10.1016/j.ast.2021.107180
000904358 0247_ $$2ISSN$$a0034-1223
000904358 0247_ $$2ISSN$$a1270-9638
000904358 0247_ $$2Handle$$a2128/30795
000904358 0247_ $$2WOS$$aWOS:000719301300009
000904358 037__ $$aFZJ-2021-05928
000904358 082__ $$a620
000904358 1001_ $$0P:(DE-HGF)0$$aBae, Ji-Yeul$$b0
000904358 245__ $$aMeasurement of surface heat transfer caused by interaction of sonic jet and supersonic crossflow near injection hole
000904358 260__ $$aParis$$bElsevier$$c2021
000904358 3367_ $$2DRIVER$$aarticle
000904358 3367_ $$2DataCite$$aOutput Types/Journal article
000904358 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645798810_831
000904358 3367_ $$2BibTeX$$aARTICLE
000904358 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904358 3367_ $$00$$2EndNote$$aJournal Article
000904358 520__ $$aThis paper investigates the surface heat transfer caused by interaction of a jet and a supersonic crossflow near the jet injection hole. A sonic jet with different momentum ratios (, 1.018, 1.477) was injected perpendicularly into a crossflow with a Mach number of 3.0 in a supersonic wind tunnel. Surface temperature through time measured by infrared thermography was used to deduce surface heat flux. In addition, heat transfer coefficients and adiabatic wall temperatures were derived from time histories of surface heat flux and temperature. In order to consider an effect of conduction from the inner hole surface, a three-dimensional energy conservation is considered in the deduction process of the heat flux. As a result, the characteristics of the heat transfer near the hole and the change in the heat transfer with momentum ratios are presented. The separation vortex and recirculation vortex are found to be dominant flow features in terms of the augmentation of the heat transfer. The maximum heat transfer is observed at the immediate vicinity of the hole due to the flow oscillation from a jet-mixing layer. This oscillation resulted in a 390% of augmentation of the heat transfer near the hole compared to the freestream even at the lowest momentum ratio. Also, the augmentation near the hole is more susceptible to change of momentum ratio compared to the augmentation on the overall interaction area.
000904358 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000904358 542__ $$2Crossref$$i2021-12-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000904358 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904358 7001_ $$0P:(DE-HGF)0$$aKim, Jihyuk$$b1
000904358 7001_ $$0P:(DE-Juel1)179367$$aLee, Namkyu$$b2$$ufzj
000904358 7001_ $$0P:(DE-HGF)0$$aBae, Hyung Mo$$b3
000904358 7001_ $$0P:(DE-HGF)0$$aCho, Hyung Hee$$b4$$eCorresponding author
000904358 77318 $$2Crossref$$3journal-article$$a10.1016/j.ast.2021.107180$$bElsevier BV$$d2021-12-01$$p107180$$tAerospace Science and Technology$$v119$$x1270-9638$$y2021
000904358 773__ $$0PERI:(DE-600)2014638-3$$a10.1016/j.ast.2021.107180$$gVol. 119, p. 107180 -$$p107180$$tAerospace science and technology$$v119$$x1270-9638$$y2021
000904358 8564_ $$uhttps://juser.fz-juelich.de/record/904358/files/FZJ-2021-05928-J.-Y.%20Bae%2C%20et%20al.%2C%202021%2C%20Aero%2C%20Measurement%20of%20surface%20heat%20transfer%20caused%20by%20interaction-1.pdf$$yRestricted
000904358 8564_ $$uhttps://juser.fz-juelich.de/record/904358/files/FZJ-2021-05928-Postscript_Aero%20measurement%20of%20surface%20heat%20transfer.pdf$$yPublished on 2021-10-26. Available in OpenAccess from 2023-10-26.
000904358 909CO $$ooai:juser.fz-juelich.de:904358$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179367$$aForschungszentrum Jülich$$b2$$kFZJ
000904358 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000904358 9141_ $$y2022
000904358 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000904358 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000904358 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000904358 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904358 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904358 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000904358 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000904358 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000904358 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000904358 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000904358 920__ $$lyes
000904358 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000904358 980__ $$ajournal
000904358 980__ $$aVDB
000904358 980__ $$aUNRESTRICTED
000904358 980__ $$aI:(DE-Juel1)IBI-4-20200312
000904358 9801_ $$aFullTexts
000904358 999C5 $$1Broadwell$$2Crossref$$9-- missing cx lookup --$$a10.2514/3.1726$$p1067 -$$tAIAA J.$$v1$$y1963
000904358 999C5 $$1Shandor$$2Crossref$$9-- missing cx lookup --$$a10.2514/3.1533$$p334 -$$tAIAA J.$$v1$$y1963
000904358 999C5 $$1Zeierman$$2Crossref$$9-- missing cx lookup --$$a10.2514/3.61863$$p161 -$$tJ. Spacecr. Rockets$$v10$$y1973
000904358 999C5 $$1Guo$$2Crossref$$9-- missing cx lookup --$$a10.2514/1.B36264$$p815 -$$tJ. Propuls. Power$$v33$$y2017
000904358 999C5 $$1Gruber$$2Crossref$$9-- missing cx lookup --$$a10.2514/3.13372$$p2191 -$$tAIAA J.$$v34$$y1996
000904358 999C5 $$1Torrez$$2Crossref$$9-- missing cx lookup --$$a10.2514/1.50272$$p371 -$$tJ. Propuls. Power$$v27$$y2011
000904358 999C5 $$1Chandra Murty$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ast.2016.01.004$$p266 -$$tAerosp. Sci. Technol.$$v50$$y2016
000904358 999C5 $$1Ben-Yakar$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2139684$$tPhys. Fluids$$v18$$y2006
000904358 999C5 $$1Spaid$$2Crossref$$9-- missing cx lookup --$$a10.2514/3.2653$$p1689 -$$tAIAA J.$$v2$$y1964
000904358 999C5 $$1Spaid$$2Crossref$$oSpaid 1964$$y1964
000904358 999C5 $$1Santiago$$2Crossref$$9-- missing cx lookup --$$a10.2514/2.5158$$p264 -$$tJ. Propuls. Power$$v13$$y1997
000904358 999C5 $$1Maddalena$$2Crossref$$9-- missing cx lookup --$$a10.2514/1.19141$$p1027 -$$tJ. Propuls. Power$$v22$$y2006
000904358 999C5 $$1McCann$$2Crossref$$9-- missing cx lookup --$$a10.2514/3.13066$$p317 -$$tAIAA J.$$v34$$y1996
000904358 999C5 $$1Gruber$$2Crossref$$9-- missing cx lookup --$$a10.2514/2.5487$$p633 -$$tJ. Propuls. Power$$v15$$y1999
000904358 999C5 $$1Liu$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ast.2020.106016$$tAerosp. Sci. Technol.$$v104$$y2020
000904358 999C5 $$1Erdem$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ast.2020.106419$$tAerosp. Sci. Technol.$$v110$$y2021
000904358 999C5 $$1Kawai$$2Crossref$$9-- missing cx lookup --$$a10.2514/1.J050282$$p2063 -$$tAIAA J.$$v48$$y2010
000904358 999C5 $$1Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ast.2019.03.044$$p31 -$$tAerosp. Sci. Technol.$$v89$$y2019
000904358 999C5 $$1Williams$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ast.2020.105908$$tAerosp. Sci. Technol.$$v103$$y2020
000904358 999C5 $$1Sebastian$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ast.2020.106209$$tAerosp. Sci. Technol.$$v106$$y2020
000904358 999C5 $$1Viti$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3112736$$tPhys. Fluids$$v21$$y2009
000904358 999C5 $$1Sun$$2Crossref$$9-- missing cx lookup --$$a10.1017/jfm.2018.455$$p551 -$$tJ. Fluid Mech.$$v850$$y2018
000904358 999C5 $$1Sun$$2Crossref$$9-- missing cx lookup --$$a10.2514/1.J056442$$p1047 -$$tAIAA J.$$v56$$y2018
000904358 999C5 $$1Huang$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ast.2016.01.001$$p183 -$$tAerosp. Sci. Technol.$$v50$$y2016
000904358 999C5 $$1Roberts$$2Crossref$$9-- missing cx lookup --$$a10.1007/s001930050103$$p105 -$$tShock Waves$$v8$$y1998
000904358 999C5 $$1Guelhan$$2Crossref$$9-- missing cx lookup --$$a10.2514/1.35899$$p891 -$$tJ. Spacecr. Rockets$$v45$$y2008
000904358 999C5 $$1Taguchi$$2Crossref$$9-- missing cx lookup --$$a10.1155/2017/7287586$$tInt. J. Aerosp. Eng.$$y2017
000904358 999C5 $$1Yu$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ijheatmasstransfer.2011.11.033$$p1764 -$$tInt. J. Heat Mass Transf.$$v55$$y2012
000904358 999C5 $$1Pope$$2Crossref$$oPope 1965$$y1965
000904358 999C5 $$2Crossref$$uB.D. Henshall, D.L. Schultz, Some notes on the use of resistance thermometers for the measurement of heat transfer rates in shock tubes, 1959.
000904358 999C5 $$1Sourgen$$2Crossref$$9-- missing cx lookup --$$a10.2514/1.50543$$p81 -$$tJ. Spacecr. Rockets$$v48$$y2011
000904358 999C5 $$1Liang$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actaastro.2018.04.009$$p12 -$$tActa Astronaut.$$v148$$y2018
000904358 999C5 $$1Liang$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actaastro.2019.12.019$$p242 -$$tActa Astronaut.$$v168$$y2020
000904358 999C5 $$1Liu$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actaastro.2018.07.048$$p886 -$$tActa Astronaut.$$v151$$y2018
000904358 999C5 $$1Monaghan$$2Crossref$$oMonaghan 1958$$y1958
000904358 999C5 $$1Génin$$2Crossref$$9-- missing cx lookup --$$a10.1080/14685240903217813$$tJ. Turbul.$$v11$$y2010
000904358 999C5 $$1Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ijhydene.2016.07.018$$p17657 -$$tInt. J. Hydrog. Energy$$v41$$y2016
000904358 999C5 $$1Choubey$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.matpr.2017.11.217$$p1321 -$$tMater. Today Proc.$$v5$$y2018