001     904358
005     20240223125852.0
024 7 _ |a 10.1016/j.ast.2021.107180
|2 doi
024 7 _ |a 0034-1223
|2 ISSN
024 7 _ |a 1270-9638
|2 ISSN
024 7 _ |a 2128/30795
|2 Handle
024 7 _ |a WOS:000719301300009
|2 WOS
037 _ _ |a FZJ-2021-05928
082 _ _ |a 620
100 1 _ |a Bae, Ji-Yeul
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Measurement of surface heat transfer caused by interaction of sonic jet and supersonic crossflow near injection hole
260 _ _ |a Paris
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1645798810_831
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper investigates the surface heat transfer caused by interaction of a jet and a supersonic crossflow near the jet injection hole. A sonic jet with different momentum ratios (, 1.018, 1.477) was injected perpendicularly into a crossflow with a Mach number of 3.0 in a supersonic wind tunnel. Surface temperature through time measured by infrared thermography was used to deduce surface heat flux. In addition, heat transfer coefficients and adiabatic wall temperatures were derived from time histories of surface heat flux and temperature. In order to consider an effect of conduction from the inner hole surface, a three-dimensional energy conservation is considered in the deduction process of the heat flux. As a result, the characteristics of the heat transfer near the hole and the change in the heat transfer with momentum ratios are presented. The separation vortex and recirculation vortex are found to be dominant flow features in terms of the augmentation of the heat transfer. The maximum heat transfer is observed at the immediate vicinity of the hole due to the flow oscillation from a jet-mixing layer. This oscillation resulted in a 390% of augmentation of the heat transfer near the hole compared to the freestream even at the lowest momentum ratio. Also, the augmentation near the hole is more susceptible to change of momentum ratio compared to the augmentation on the overall interaction area.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
542 _ _ |i 2021-12-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kim, Jihyuk
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lee, Namkyu
|0 P:(DE-Juel1)179367
|b 2
|u fzj
700 1 _ |a Bae, Hyung Mo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Cho, Hyung Hee
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 1 8 |a 10.1016/j.ast.2021.107180
|b Elsevier BV
|d 2021-12-01
|p 107180
|3 journal-article
|2 Crossref
|t Aerospace Science and Technology
|v 119
|y 2021
|x 1270-9638
773 _ _ |a 10.1016/j.ast.2021.107180
|g Vol. 119, p. 107180 -
|0 PERI:(DE-600)2014638-3
|p 107180
|t Aerospace science and technology
|v 119
|y 2021
|x 1270-9638
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/904358/files/FZJ-2021-05928-J.-Y.%20Bae%2C%20et%20al.%2C%202021%2C%20Aero%2C%20Measurement%20of%20surface%20heat%20transfer%20caused%20by%20interaction-1.pdf
856 4 _ |y Published on 2021-10-26. Available in OpenAccess from 2023-10-26.
|u https://juser.fz-juelich.de/record/904358/files/FZJ-2021-05928-Postscript_Aero%20measurement%20of%20surface%20heat%20transfer.pdf
909 C O |o oai:juser.fz-juelich.de:904358
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179367
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 1 _ |a FullTexts
999 C 5 |a 10.2514/3.1726
|9 -- missing cx lookup --
|1 Broadwell
|p 1067 -
|2 Crossref
|t AIAA J.
|v 1
|y 1963
999 C 5 |a 10.2514/3.1533
|9 -- missing cx lookup --
|1 Shandor
|p 334 -
|2 Crossref
|t AIAA J.
|v 1
|y 1963
999 C 5 |a 10.2514/3.61863
|9 -- missing cx lookup --
|1 Zeierman
|p 161 -
|2 Crossref
|t J. Spacecr. Rockets
|v 10
|y 1973
999 C 5 |a 10.2514/1.B36264
|9 -- missing cx lookup --
|1 Guo
|p 815 -
|2 Crossref
|t J. Propuls. Power
|v 33
|y 2017
999 C 5 |a 10.2514/3.13372
|9 -- missing cx lookup --
|1 Gruber
|p 2191 -
|2 Crossref
|t AIAA J.
|v 34
|y 1996
999 C 5 |a 10.2514/1.50272
|9 -- missing cx lookup --
|1 Torrez
|p 371 -
|2 Crossref
|t J. Propuls. Power
|v 27
|y 2011
999 C 5 |a 10.1016/j.ast.2016.01.004
|9 -- missing cx lookup --
|1 Chandra Murty
|p 266 -
|2 Crossref
|t Aerosp. Sci. Technol.
|v 50
|y 2016
999 C 5 |a 10.1063/1.2139684
|1 Ben-Yakar
|9 -- missing cx lookup --
|2 Crossref
|t Phys. Fluids
|v 18
|y 2006
999 C 5 |a 10.2514/3.2653
|9 -- missing cx lookup --
|1 Spaid
|p 1689 -
|2 Crossref
|t AIAA J.
|v 2
|y 1964
999 C 5 |1 Spaid
|y 1964
|2 Crossref
|o Spaid 1964
999 C 5 |a 10.2514/2.5158
|9 -- missing cx lookup --
|1 Santiago
|p 264 -
|2 Crossref
|t J. Propuls. Power
|v 13
|y 1997
999 C 5 |a 10.2514/1.19141
|9 -- missing cx lookup --
|1 Maddalena
|p 1027 -
|2 Crossref
|t J. Propuls. Power
|v 22
|y 2006
999 C 5 |a 10.2514/3.13066
|9 -- missing cx lookup --
|1 McCann
|p 317 -
|2 Crossref
|t AIAA J.
|v 34
|y 1996
999 C 5 |a 10.2514/2.5487
|9 -- missing cx lookup --
|1 Gruber
|p 633 -
|2 Crossref
|t J. Propuls. Power
|v 15
|y 1999
999 C 5 |a 10.1016/j.ast.2020.106016
|1 Liu
|9 -- missing cx lookup --
|2 Crossref
|t Aerosp. Sci. Technol.
|v 104
|y 2020
999 C 5 |a 10.1016/j.ast.2020.106419
|1 Erdem
|9 -- missing cx lookup --
|2 Crossref
|t Aerosp. Sci. Technol.
|v 110
|y 2021
999 C 5 |a 10.2514/1.J050282
|9 -- missing cx lookup --
|1 Kawai
|p 2063 -
|2 Crossref
|t AIAA J.
|v 48
|y 2010
999 C 5 |a 10.1016/j.ast.2019.03.044
|9 -- missing cx lookup --
|1 Zhao
|p 31 -
|2 Crossref
|t Aerosp. Sci. Technol.
|v 89
|y 2019
999 C 5 |a 10.1016/j.ast.2020.105908
|1 Williams
|9 -- missing cx lookup --
|2 Crossref
|t Aerosp. Sci. Technol.
|v 103
|y 2020
999 C 5 |a 10.1016/j.ast.2020.106209
|1 Sebastian
|9 -- missing cx lookup --
|2 Crossref
|t Aerosp. Sci. Technol.
|v 106
|y 2020
999 C 5 |a 10.1063/1.3112736
|1 Viti
|9 -- missing cx lookup --
|2 Crossref
|t Phys. Fluids
|v 21
|y 2009
999 C 5 |a 10.1017/jfm.2018.455
|9 -- missing cx lookup --
|1 Sun
|p 551 -
|2 Crossref
|t J. Fluid Mech.
|v 850
|y 2018
999 C 5 |a 10.2514/1.J056442
|9 -- missing cx lookup --
|1 Sun
|p 1047 -
|2 Crossref
|t AIAA J.
|v 56
|y 2018
999 C 5 |a 10.1016/j.ast.2016.01.001
|9 -- missing cx lookup --
|1 Huang
|p 183 -
|2 Crossref
|t Aerosp. Sci. Technol.
|v 50
|y 2016
999 C 5 |a 10.1007/s001930050103
|9 -- missing cx lookup --
|1 Roberts
|p 105 -
|2 Crossref
|t Shock Waves
|v 8
|y 1998
999 C 5 |a 10.2514/1.35899
|9 -- missing cx lookup --
|1 Guelhan
|p 891 -
|2 Crossref
|t J. Spacecr. Rockets
|v 45
|y 2008
999 C 5 |a 10.1155/2017/7287586
|1 Taguchi
|y 2017
|2 Crossref
|t Int. J. Aerosp. Eng.
|9 -- missing cx lookup --
999 C 5 |a 10.1016/j.ijheatmasstransfer.2011.11.033
|9 -- missing cx lookup --
|1 Yu
|p 1764 -
|2 Crossref
|t Int. J. Heat Mass Transf.
|v 55
|y 2012
999 C 5 |1 Pope
|y 1965
|2 Crossref
|o Pope 1965
999 C 5 |2 Crossref
|u B.D. Henshall, D.L. Schultz, Some notes on the use of resistance thermometers for the measurement of heat transfer rates in shock tubes, 1959.
999 C 5 |a 10.2514/1.50543
|9 -- missing cx lookup --
|1 Sourgen
|p 81 -
|2 Crossref
|t J. Spacecr. Rockets
|v 48
|y 2011
999 C 5 |a 10.1016/j.actaastro.2018.04.009
|9 -- missing cx lookup --
|1 Liang
|p 12 -
|2 Crossref
|t Acta Astronaut.
|v 148
|y 2018
999 C 5 |a 10.1016/j.actaastro.2019.12.019
|9 -- missing cx lookup --
|1 Liang
|p 242 -
|2 Crossref
|t Acta Astronaut.
|v 168
|y 2020
999 C 5 |a 10.1016/j.actaastro.2018.07.048
|9 -- missing cx lookup --
|1 Liu
|p 886 -
|2 Crossref
|t Acta Astronaut.
|v 151
|y 2018
999 C 5 |1 Monaghan
|y 1958
|2 Crossref
|o Monaghan 1958
999 C 5 |a 10.1080/14685240903217813
|1 Génin
|9 -- missing cx lookup --
|2 Crossref
|t J. Turbul.
|v 11
|y 2010
999 C 5 |a 10.1016/j.ijhydene.2016.07.018
|9 -- missing cx lookup --
|1 Zhao
|p 17657 -
|2 Crossref
|t Int. J. Hydrog. Energy
|v 41
|y 2016
999 C 5 |a 10.1016/j.matpr.2017.11.217
|9 -- missing cx lookup --
|1 Choubey
|p 1321 -
|2 Crossref
|t Mater. Today Proc.
|v 5
|y 2018


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21