000904359 001__ 904359
000904359 005__ 20220131120424.0
000904359 0247_ $$2doi$$a10.1039/D1CP03210K
000904359 0247_ $$2ISSN$$a1463-9076
000904359 0247_ $$2ISSN$$a1463-9084
000904359 0247_ $$2Handle$$a2128/30102
000904359 0247_ $$2altmetric$$aaltmetric:109536586
000904359 0247_ $$2pmid$$apmid:34608908
000904359 0247_ $$2WOS$$aWOS:000703642400001
000904359 037__ $$aFZJ-2021-05929
000904359 082__ $$a540
000904359 1001_ $$00000-0002-4819-4559$$aHansen, Jan$$b0
000904359 245__ $$aInteractions in protein solutions close to liquid–liquid phase separation: ethanol reduces attractions via changes of the dielectric solution properties
000904359 260__ $$aCambridge$$bRSC Publ.$$c2021
000904359 3367_ $$2DRIVER$$aarticle
000904359 3367_ $$2DataCite$$aOutput Types/Journal article
000904359 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641910838_22042
000904359 3367_ $$2BibTeX$$aARTICLE
000904359 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904359 3367_ $$00$$2EndNote$$aJournal Article
000904359 520__ $$aEthanol is a common protein crystallization agent, precipitant, and denaturant, but also alters the dielectric properties of solutions. While ethanol-induced unfolding is largely ascribed to its hydrophobic parts, its effect on protein phase separation and inter-protein interactions remains poorly understood. Here, the effects of ethanol and NaCl on the phase behavior and interactions of protein solutions are studied in terms of the metastable liquid–liquid phase separation (LLPS) and the second virial coefficient B2 using lysozyme solutions. Determination of the phase diagrams shows that the cloud-point temperatures are reduced and raised by the addition of ethanol and salt, respectively. The observed trends can be explained using the extended law of corresponding states as changes of B2. The results for B2 agree quantitatively with those of static light scattering and small-angle X-ray scattering experiments. Furthermore, B2 values calculated based on inter-protein interactions described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential and considering the dielectric solution properties and electrostatic screening due to the ethanol and salt content quantitatively agree with the experimentally observed B2 values.
000904359 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000904359 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904359 7001_ $$0P:(DE-HGF)0$$aUthayakumar, Rajeevann$$b1
000904359 7001_ $$00000-0002-7768-0206$$aPedersen, Jan Skov$$b2
000904359 7001_ $$0P:(DE-Juel1)IHRS-BioSoft-20902$$aEgelhaaf, Stefan U.$$b3
000904359 7001_ $$0P:(DE-Juel1)180761$$aPlatten, Florian$$b4$$eCorresponding author$$ufzj
000904359 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D1CP03210K$$gVol. 23, no. 39, p. 22384 - 22394$$n39$$p22384 - 22394$$tPhysical chemistry, chemical physics$$v23$$x1463-9076$$y2021
000904359 8564_ $$uhttps://juser.fz-juelich.de/record/904359/files/d1cp03210k.pdf$$yOpenAccess
000904359 909CO $$ooai:juser.fz-juelich.de:904359$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904359 9101_ $$0I:(DE-HGF)0$$60000-0002-4819-4559$$a Heinrich-Heine-Universität Düsseldorf$$b0
000904359 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Heinrich-Heine-Universität Düsseldorf$$b1
000904359 9101_ $$0I:(DE-HGF)0$$60000-0002-7768-0206$$aExternal Institute$$b2$$kExtern
000904359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180761$$aForschungszentrum Jülich$$b4$$kFZJ
000904359 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000904359 9141_ $$y2021
000904359 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000904359 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000904359 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904359 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000904359 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000904359 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000904359 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000904359 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000904359 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-01-28$$wger
000904359 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2019$$d2021-01-28
000904359 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-28$$wger
000904359 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000904359 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000904359 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000904359 920__ $$lyes
000904359 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000904359 980__ $$ajournal
000904359 980__ $$aVDB
000904359 980__ $$aUNRESTRICTED
000904359 980__ $$aI:(DE-Juel1)IBI-4-20200312
000904359 9801_ $$aFullTexts