000904360 001__ 904360
000904360 005__ 20220131120424.0
000904360 0247_ $$2doi$$a10.1039/D0CP06113A
000904360 0247_ $$2ISSN$$a1463-9076
000904360 0247_ $$2ISSN$$a1463-9084
000904360 0247_ $$2Handle$$a2128/30103
000904360 0247_ $$2altmetric$$aaltmetric:97881287
000904360 0247_ $$2pmid$$a33481978
000904360 0247_ $$2WOS$$aWOS:000614634000016
000904360 037__ $$aFZJ-2021-05930
000904360 082__ $$a540
000904360 1001_ $$0P:(DE-HGF)0$$aHentschel, Lorena$$b0
000904360 245__ $$aThe crystallization enthalpy and entropy of protein solutions: microcalorimetry, van't Hoff determination and linearized Poisson–Boltzmann model of tetragonal lysozyme crystals
000904360 260__ $$aCambridge$$bRSC Publ.$$c2021
000904360 3367_ $$2DRIVER$$aarticle
000904360 3367_ $$2DataCite$$aOutput Types/Journal article
000904360 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641911156_22042
000904360 3367_ $$2BibTeX$$aARTICLE
000904360 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904360 3367_ $$00$$2EndNote$$aJournal Article
000904360 520__ $$aDuring a first-order phase transition, a thermodynamic system releases or absorbs latent heat. Despite their fundamental importance, the heat or enthalpy change occurring during protein crystallization has been directly measured only in a few cases, and the associated entropy change can only be determined indirectly. This work provides an experimental determination and theoretical analysis of the dependence of the molar crystallization enthalpy of lysozyme solutions, ΔHxtal, on the physicochemical solution parameters. Its value is determined directly by isothermal microcalorimetry and indirectly by a van't Hoff analysis of solubility data, which quantitatively agree. This suggests a two-state crystallization process, in which oligomeric intermediates play a minor role. ΔHxtal is found to be negative on the order of few tens of the thermal energy per molecule. It is independent of protein concentration and stirring speed, but weakly depends on salt (NaCl) concentration and solution pH. Assuming that crystals are electrostatically neutral, these trends are explained by a linearized Poisson–Boltzmann theory. In addition, the molar crystallization entropy, ΔSxtal, is analyzed. The dependence of the van't Hoff entropy on salt concentration and pH is captured by the model, complementing the analysis of crystallization thermodynamics.
000904360 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000904360 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904360 7001_ $$00000-0002-4819-4559$$aHansen, Jan$$b1
000904360 7001_ $$0P:(DE-Juel1)IHRS-BioSoft-20902$$aEgelhaaf, Stefan U.$$b2
000904360 7001_ $$0P:(DE-Juel1)180761$$aPlatten, Florian$$b3$$eCorresponding author$$ufzj
000904360 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D0CP06113A$$gVol. 23, no. 4, p. 2686 - 2696$$n4$$p2686 - 2696$$tPhysical chemistry, chemical physics$$v23$$x1463-9076$$y2021
000904360 8564_ $$uhttps://juser.fz-juelich.de/record/904360/files/d0cp06113a.pdf$$yOpenAccess
000904360 909CO $$ooai:juser.fz-juelich.de:904360$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904360 9101_ $$0I:(DE-HGF)0$$60000-0002-4819-4559$$aExternal Institute$$b1$$kExtern
000904360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180761$$aForschungszentrum Jülich$$b3$$kFZJ
000904360 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000904360 9141_ $$y2021
000904360 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000904360 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000904360 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904360 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000904360 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000904360 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000904360 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000904360 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000904360 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-01-28$$wger
000904360 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2019$$d2021-01-28
000904360 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-28$$wger
000904360 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000904360 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000904360 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000904360 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000904360 9801_ $$aFullTexts
000904360 980__ $$ajournal
000904360 980__ $$aVDB
000904360 980__ $$aUNRESTRICTED
000904360 980__ $$aI:(DE-Juel1)IBI-4-20200312