000904361 001__ 904361
000904361 005__ 20230123101848.0
000904361 0247_ $$2doi$$a10.1016/j.ijheatmasstransfer.2020.120596
000904361 0247_ $$2ISSN$$a0017-9310
000904361 0247_ $$2ISSN$$a1879-2189
000904361 0247_ $$2Handle$$a2128/30796
000904361 0247_ $$2WOS$$aWOS:000594277500082
000904361 037__ $$aFZJ-2021-05931
000904361 082__ $$a620
000904361 1001_ $$00000-0002-9549-9419$$aHsu, Wei-Ting$$b0
000904361 245__ $$aEnhancement of flow boiling heat transfer using heterogeneous wettability patterned surfaces with varying inter-spacing
000904361 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000904361 3367_ $$2DRIVER$$aarticle
000904361 3367_ $$2DataCite$$aOutput Types/Journal article
000904361 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645799453_5017
000904361 3367_ $$2BibTeX$$aARTICLE
000904361 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904361 3367_ $$00$$2EndNote$$aJournal Article
000904361 520__ $$aThis study experimentally investigated the influence of heterogeneous wettability-patterned surfaces with varying inter-spacing on flow boiling heat transfer characteristics. The test surfaces consisted of three fluorooctyltrichlorosilane hydrophobic-patterned array structures having a triangle, inverted triangle, and circular shape on a SiO2- hydrophilic substrate, with an inter-spacing of 0.75 or 1 mm. The working fluid was deionized water, and the Reynolds number was 6,000 at atmospheric pressure. Among the test surfaces, varying the inter-spacing between neighboring hydrophobic patterns slightly enhanced the heat transfer coefficient (HTC) due to changing the bubble characteristics. In terms of the shape effect of hydrophobic patterns, the heterogeneous wettability-patterned surfaces dominated the overall flow boiling heat transfer performance showing a significant increase in critical heat flux (CHF) compared to the Si surface, by 40–43%. In addition, all of the wettability test surfaces showed a markedly higher heat transfer coefficient than the Si surface, by 35–163%. This experiment is explained by analyzing the relationship between bubble lift forces and the various hydrophobic-patterned shapes in a horizontal flow channel, in an attempt to better understand flow boiling heat transfer and optimize the pattern design.
000904361 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000904361 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904361 7001_ $$0P:(DE-HGF)0$$aLee, Donghwi$$b1
000904361 7001_ $$0P:(DE-Juel1)179367$$aLee, Namkyu$$b2
000904361 7001_ $$0P:(DE-HGF)0$$aYun, Maroosol$$b3
000904361 7001_ $$0P:(DE-HGF)0$$aCho, Hyung Hee$$b4$$eCorresponding author
000904361 773__ $$0PERI:(DE-600)2012726-1$$a10.1016/j.ijheatmasstransfer.2020.120596$$gVol. 164, p. 120596 -$$p120596 -$$tInternational journal of heat and mass transfer$$v164$$x0017-9310$$y2021
000904361 8564_ $$uhttps://juser.fz-juelich.de/record/904361/files/FZJ-2021-05931-Postscripts_boiling%20heat%20transfer.pdf$$yPublished on 2020-10-22. Available in OpenAccess from 2022-10-22.
000904361 8564_ $$uhttps://juser.fz-juelich.de/record/904361/files/FZJ-2021-05931-W.-T.%20Hsu%2C%20et%20al.%2C%20IJHMT%2C%202021%2C%20enhancement%20of%20flow%20boiling%20heat%20transfer.pdf$$yRestricted
000904361 909CO $$ooai:juser.fz-juelich.de:904361$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904361 9101_ $$0I:(DE-HGF)0$$60000-0002-9549-9419$$aExternal Institute$$b0$$kExtern
000904361 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179367$$aForschungszentrum Jülich$$b2$$kFZJ
000904361 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000904361 9141_ $$y2022
000904361 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000904361 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000904361 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-04
000904361 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-04
000904361 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904361 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904361 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HEAT MASS TRAN : 2019$$d2021-02-04
000904361 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000904361 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000904361 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-04
000904361 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000904361 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000904361 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000904361 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000904361 980__ $$ajournal
000904361 980__ $$aVDB
000904361 980__ $$aUNRESTRICTED
000904361 980__ $$aI:(DE-Juel1)IBI-4-20200312
000904361 9801_ $$aFullTexts