000904363 001__ 904363
000904363 005__ 20230123101858.0
000904363 0247_ $$2doi$$a10.1021/acsami.1c09333
000904363 0247_ $$2ISSN$$a1944-8244
000904363 0247_ $$2ISSN$$a1944-8252
000904363 0247_ $$2Handle$$a2128/30797
000904363 0247_ $$2pmid$$a34472852
000904363 0247_ $$2WOS$$aWOS:000697282300113
000904363 037__ $$aFZJ-2021-05933
000904363 082__ $$a600
000904363 1001_ $$0P:(DE-Juel1)179367$$aLee, Namkyu$$b0$$ufzj
000904363 245__ $$aFlexible Thermocamouflage Materials in Supersonic Flowfields with Selective Energy Dissipation
000904363 260__ $$aWashington, DC$$bSoc.$$c2021
000904363 3367_ $$2DRIVER$$aarticle
000904363 3367_ $$2DataCite$$aOutput Types/Journal article
000904363 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645800205_7482
000904363 3367_ $$2BibTeX$$aARTICLE
000904363 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904363 3367_ $$00$$2EndNote$$aJournal Article
000904363 520__ $$aCamouflage refers to a creature’s behavior to protect itself from predators by assimilating its signature with the environment. In particular, thermal camouflage materials in the infrared (IR) wave are attracting interest for energy, military, and space applications. To date, several types of camouflage materials such as photonic crystals and metal–dielectric–metal structures have been developed. However, flexible camouflage materials still face challenging issues because of the material’s brittleness and anomalous dispersion. Herein, we propose flexible thermocamouflage materials (FTCM) for IR camouflage on an arbitrary surface without mechanical failure. Without using a polymer as a dielectric layer, we realized FTCM by changing the unit cell structure discretely. By imaging methods, we verified their flexibility, machinability, and IR camouflage performance. We also measured and calculated the spectral emissivity of FTCM; they showed electromagnetic behavior similar to a conventional emitter. We quantified the IR camouflage performance of FTCM that the emissivity in the undetected band (5–8 μm) is 0.27 and the emissivity values in detected bands are 0.12 (3–5 μm) and 0.16 (8–14 μm) in the detected bands, respectively. Finally, we confirmed the IR camouflage performance on an arbitrary surface in a supersonic flowfield. FTCM are expected to help to improve our basic understanding of metamaterials and find widespread application as IR camouflage materials.
000904363 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000904363 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904363 7001_ $$0P:(DE-HGF)0$$aLim, Joon-Soo$$b1
000904363 7001_ $$0P:(DE-HGF)0$$aChang, Injoong$$b2
000904363 7001_ $$0P:(DE-HGF)0$$aLee, Donghwi$$b3
000904363 7001_ $$00000-0001-5309-3798$$aCho, Hyung Hee$$b4$$eCorresponding author
000904363 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.1c09333$$gVol. 13, no. 36, p. 43524 - 43532$$n36$$p43524 - 43532$$tACS applied materials & interfaces$$v13$$x1944-8244$$y2021
000904363 8564_ $$uhttps://juser.fz-juelich.de/record/904363/files/FZJ-2021-05933-Postscript_flexible%20emitter.pdf$$yPublished on 2021-09-02. Available in OpenAccess from 2022-09-02.
000904363 8564_ $$uhttps://juser.fz-juelich.de/record/904363/files/acsami.1c09333.pdf$$yRestricted
000904363 909CO $$ooai:juser.fz-juelich.de:904363$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179367$$aForschungszentrum Jülich$$b0$$kFZJ
000904363 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000904363 9141_ $$y2022
000904363 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000904363 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000904363 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000904363 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904363 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000904363 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2019$$d2021-01-30
000904363 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000904363 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000904363 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2019$$d2021-01-30
000904363 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000904363 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000904363 920__ $$lyes
000904363 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000904363 980__ $$ajournal
000904363 980__ $$aVDB
000904363 980__ $$aUNRESTRICTED
000904363 980__ $$aI:(DE-Juel1)IBI-4-20200312
000904363 9801_ $$aFullTexts