000904364 001__ 904364
000904364 005__ 20230123101849.0
000904364 0247_ $$2doi$$a10.1016/j.ijheatmasstransfer.2021.121173
000904364 0247_ $$2ISSN$$a0017-9310
000904364 0247_ $$2ISSN$$a1879-2189
000904364 0247_ $$2Handle$$a2128/30798
000904364 0247_ $$2WOS$$aWOS:000646196300003
000904364 037__ $$aFZJ-2021-05934
000904364 082__ $$a620
000904364 1001_ $$0P:(DE-Juel1)179367$$aLee, Namkyu$$b0
000904364 245__ $$aTransparent Metamaterials for Multispectral Camouflage with Thermal Management
000904364 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000904364 3367_ $$2DRIVER$$aarticle
000904364 3367_ $$2DataCite$$aOutput Types/Journal article
000904364 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645800561_32327
000904364 3367_ $$2BibTeX$$aARTICLE
000904364 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904364 3367_ $$00$$2EndNote$$aJournal Article
000904364 520__ $$aArtificial camouflage surfaces, such as metamaterials, that interact with the electromagnetic (EM) wave represent an emerging field in which performance breakthroughs are occurring. In particular, the visible and infrared (IR) waves are of interest, because these waves are desirable for energy, military and space applications. However, needs of additional actuations, eccentric properties for a specific situation and complicated fabrications, with only a few reports to date, show that multispectral (visible and IR) camouflage surfaces are still challenging issues. Herein, we realize transparent metamaterials (TMM) as visible-IR camouflage surfaces. TMM achieves an average transmissivity of 0.44 in the visible regime. It also reduces the blackbody IR signature by 64% over 3-5 μm and 75% over 8-14 μm and dissipates 2200% more energy in the undetected band of 5-8 μm compared to an Au surface used for IR camouflage. These findings advance multispectral manipulation and expand energy applications in visible-IR waves.
000904364 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000904364 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904364 7001_ $$0P:(DE-HGF)0$$aLim, Joon-Soo$$b1
000904364 7001_ $$0P:(DE-HGF)0$$aChang, Injoong$$b2
000904364 7001_ $$0P:(DE-HGF)0$$aLee, Donghwi$$b3
000904364 7001_ $$0P:(DE-HGF)0$$aCho, Hyung Hee$$b4$$eCorresponding author
000904364 773__ $$0PERI:(DE-600)2012726-1$$a10.1016/j.ijheatmasstransfer.2021.121173$$gVol. 173, p. 121173 -$$p121173 -$$tInternational journal of heat and mass transfer$$v173$$x0017-9310$$y2021
000904364 8564_ $$uhttps://juser.fz-juelich.de/record/904364/files/FZJ-2021-05934-N.%20Lee%2C%20et%20al.%2C%202021%2C%20Transparent%20metamaterials.pdf$$yRestricted
000904364 8564_ $$uhttps://juser.fz-juelich.de/record/904364/files/FZJ-2021-05934-Postscripts_transparent%20emitter.pdf$$yPublished on 2021-03-23. Available in OpenAccess from 2023-03-23.
000904364 909CO $$ooai:juser.fz-juelich.de:904364$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000904364 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179367$$aForschungszentrum Jülich$$b0$$kFZJ
000904364 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000904364 9141_ $$y2022
000904364 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000904364 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000904364 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-04
000904364 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-04
000904364 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000904364 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000904364 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HEAT MASS TRAN : 2019$$d2021-02-04
000904364 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000904364 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000904364 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-04
000904364 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000904364 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000904364 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000904364 920__ $$lyes
000904364 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000904364 980__ $$ajournal
000904364 980__ $$aVDB
000904364 980__ $$aUNRESTRICTED
000904364 980__ $$aI:(DE-Juel1)IBI-4-20200312
000904364 9801_ $$aFullTexts