000904367 001__ 904367
000904367 005__ 20240619091915.0
000904367 0247_ $$2doi$$a10.1007/s10450-020-00295-4
000904367 0247_ $$2ISSN$$a0929-5607
000904367 0247_ $$2ISSN$$a1572-8757
000904367 0247_ $$2datacite_doi$$a10.34734/FZJ-2021-05937
000904367 0247_ $$2WOS$$aWOS:000613967000001
000904367 037__ $$aFZJ-2021-05937
000904367 082__ $$a540
000904367 1001_ $$0P:(DE-Juel1)130777$$aKruteva, Margarita$$b0$$eCorresponding author
000904367 245__ $$aDynamics studied by Quasielastic Neutron Scattering (QENS)
000904367 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2021
000904367 3367_ $$2DRIVER$$aarticle
000904367 3367_ $$2DataCite$$aOutput Types/Journal article
000904367 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1711008836_21658
000904367 3367_ $$2BibTeX$$aARTICLE
000904367 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000904367 3367_ $$00$$2EndNote$$aJournal Article
000904367 520__ $$aQuasielastic neutron scattering (QENS) allows measurement of the molecular displacements in time and space, from pico- to tens of nanoseconds and from Ångstroms to nanometers, respectively. The method probes dynamics from fast vibrational modes down to slow diffusive motion. Every scattering experiment leads to a dynamic structure factor S(Q⃗ ,ω) or its spatial and temporal Fourier transform (van Hove correlation function G(r⃗ ,t)). This shows exactly where the atoms are and how they move. In this manuscript the basics of the QENS method are presented and a few examples highlighting the potentials of QENS are given: (i) diffusion of liquids and gases in nano- and mesoporous materials; (ii) hydrogen dynamics in a high temperature polymer electrolyte fuel cell (HT-PEFC) and (iii) influence of the surface interactions on polymer dynamics in nanopores.
000904367 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0
000904367 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x1
000904367 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x2
000904367 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x3
000904367 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000904367 773__ $$0PERI:(DE-600)1483298-7$$a10.1007/s10450-020-00295-4$$gVol. 27, no. 5, p. 875 - 889$$n5$$p875 - 889$$tAdsorption$$v27$$x0929-5607$$y2021
000904367 8564_ $$uhttps://juser.fz-juelich.de/record/904367/files/Kruteva2021_Article_DynamicsStudiedByQuasielasticN.pdf$$yOpenAccess
000904367 8767_ $$d2021-02-02$$eHybrid-OA$$jPublish and Read$$lDEAL: Springer
000904367 909CO $$ooai:juser.fz-juelich.de:904367$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000904367 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130777$$aForschungszentrum Jülich$$b0$$kFZJ
000904367 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0
000904367 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
000904367 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x2
000904367 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x3
000904367 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000904367 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000904367 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000904367 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000904367 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADSORPTION : 2019$$d2021-02-03
000904367 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000904367 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-02-03$$wger
000904367 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000904367 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000904367 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000904367 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000904367 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000904367 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000904367 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000904367 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000904367 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
000904367 9201_ $$0I:(DE-Juel1)IBI-8-20200312$$kIBI-8$$lNeutronenstreuung und biologische Materie$$x1
000904367 9801_ $$aAPC
000904367 9801_ $$aFullTexts
000904367 980__ $$ajournal
000904367 980__ $$aVDB
000904367 980__ $$aUNRESTRICTED
000904367 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000904367 980__ $$aI:(DE-Juel1)IBI-8-20200312
000904367 980__ $$aAPC
000904367 981__ $$aI:(DE-Juel1)JCNS-1-20110106